BA Marvin Henke: Difference between revisions
| Line 24: | Line 24: | ||
Durch die Neumann-Bedingung lassen sich die Koeffizienten bestimmen: \(A = 0\) und \(B=-v_0 R^2\) | Durch die Neumann-Bedingung lassen sich die Koeffizienten bestimmen: \(A = 0\) und \(B=-v_0 R^2\) | ||
Damit ist das gesuchte Potential gefunden: | |||
\begin{align} | |||
\phi(r,\varphi) = -v_0 R^2 \frac{\cos \varphi}{r} | |||
\end{align} | |||
Es ergeben sich sich folgende Geschwindigkeiten als Gradient des Potentials: | |||
\begin{align} | |||
Revision as of 16:58, 3 May 2024
Herleitung inkompressible,inviskose, wirbelfreie Strömung um einen Zylinder
Betrachtet wird ein sich mit Geschwindigkeit \(\vec{v_0}=v_0 \hat{x}\) durch ein Fluid bewegender Zylinder mit Radius \(R\). Aufgrund der Annahmen (inkompressibel,inviskos, wirbelfrei) gilt folgendes: \begin{align} \rho(\vec{r},t) = \rho(\vec{r})\ , \frac{\mathrm{d} \rho}{\mathrm{d} t} + \rho (\vec{\nabla}\cdot\vec{v}) = 0 \ \Rightarrow\ \vec{\nabla}\cdot\vec{v}=0\\ \vec{\nabla}\times\vec{v}=0 \ \Rightarrow\ \exists \phi : \vec{v} = \vec{\nabla} \phi \end{align} Für das Potential \(\phi\) folgt Aufgrund von \(\vec{\nabla}\cdot\vec{v}=0\), dass \(\Delta\phi = 0\) gilt (Laplace-Gleichung).
Im Unendlichen soll die Geschwindigkeit des Fluids verschwinden, d.h. \( \vec{v} \xrightarrow[]{r \to \infty} \vec{0}\).
Für den Rand des Zylinders soll die Relativgeschwindigkeit des Fluids senkrecht zur Oberflächennormale sein, d.h. \(\forall \varphi : (\vec{v}(r=R,\varphi) - v_0 \hat{x})\cdot \hat{n} = 0 \).
Es ist also eine Lösung der Laplace-Gleichung auf \( \mathbb{R}^2 \setminus B_R(0) \) gesucht, welche im Unendlichen einen verschwindenden Gradienten hat und auf \( \partial B_R(0) \) die Neumann-Randbedingung \( \partial_n \phi = v_0 \hat{n}\cdot\hat{x} \) erfüllt. Die Fundamentallösungen der Laplace-Gleichung inspirieren folgenden Ansatz: \begin{align} \phi(r,\varphi) = \frac{c(\varphi)}{r} \end{align} Für beschränkte \( c(\varphi) \) verschwindet das Potential und die Geschwindigkeit im Unendlichen. Einsetzen in die Laplace-Gleichung liefert die folgende Bedingung an \( c(\varphi) \): \begin{align} c^{\prime\prime}(\varphi) + c(\varphi) = 0 \ \Rightarrow\ c(\varphi) = A \sin (\varphi) + B \cos (\varphi) \end{align}
Durch die Neumann-Bedingung lassen sich die Koeffizienten bestimmen: \(A = 0\) und \(B=-v_0 R^2\)
Damit ist das gesuchte Potential gefunden: \begin{align} \phi(r,\varphi) = -v_0 R^2 \frac{\cos \varphi}{r} \end{align} Es ergeben sich sich folgende Geschwindigkeiten als Gradient des Potentials: \begin{align}