BA Marvin Henke: Difference between revisions

From Arbeitsgruppe Kuiper
Jump to navigation Jump to search
No edit summary
Line 47: Line 47:


== Methodik zur Bestimmung des Übergangs von L1 in L2  ==
== Methodik zur Bestimmung des Übergangs von L1 in L2  ==
Im Folgenden ist die implementierte Methodik zur Bestimmung des ersten Übergangs von L1 (creeping flow / non-separation regime [0 < RE < 4-5]) zu L2 (closed near-wake regime [4-5 < RE < 30-48]) beschrieben. Der wesentliche Unterschied liegt in der Symmetrie des Flusses bezüglich der y-Achse. Für L1 ist eine hohe Symmetrie zu erwarten, während für L2 aufgrund der sich bildenden Vortices hinter dem Zylinder eine niedrigere Symmetrie zu erwarten ist. Als Maß für die Asymmetrie wird folgende Definition verwendet:
Im Folgenden ist die implementierte Methodik zur Bestimmung des ersten Übergangs von L1 (creeping flow / non-separation regime [0 < RE < 4-5]) zu L2 (closed near-wake regime [4-5 < RE < 30-48]) beschrieben. Der wesentliche Unterschied liegt in der Symmetrie des Flusses bezüglich der y-Achse. Für L1 ist eine hohe Symmetrie zu erwarten, während für L2 aufgrund der sich bildenden Vortices hinter dem Zylinder eine niedrigere Symmetrie zu erwarten ist.
 
Die Strömungskenngrößen (\(z.B. \rho, \vec{v}\)) sind aufgrund der Numerik diskret, d.h.:
\begin{align}
\begin{align}
A := \frac{2}{T} \sum_k \frac{\Delta t_k}{\displaystyle\sum_i \Delta V_i \cdot (\rho_i^k)^2}
t = k\Delta t \ \ \Rightarrow s(\vec{x},t)\ \widehat{=}\ s_i^k \\
\sum_{-\frac{\pi}{2} < \varphi < \frac{\pi}{2}} \Delta V(\varphi) \left[\displaystyle \rho^k(\varphi) - \rho^k(\pi - \varphi) \right]^2
\dot{s}_i^{k+\frac{n}{2}} = \frac{s_i^{k+n} - s_i^k}{n\Delta t}
\end{align}
\end{align}
Als Maß für die Asymmetrie eines Skalarfelds \(s\) (z.B. \(\rho\)) wird folgende Definition verwendet:
\begin{align}
A(s) := \frac{1}{2 T} \sum_k \frac{\Delta t_k}{\sum_i \Delta V_i \cdot (s_i^k)^2}
\sum_{-\frac{\pi}{2} < \varphi < \frac{\pi}{2}} \Delta V(\varphi) \left[s^k(\varphi) - s^k(\pi - \varphi) \right]^2
\end{align}
Diese Definition garantiert, dass für Skalarfelder \(s(x,y) = -s(-x,y)\) die Asymmetrie \(A(s) = 1\) beträgt.

Revision as of 17:05, 15 May 2024

Herleitung inkompressible,inviskose, wirbelfreie Strömung um einen Zylinder

Betrachtet wird ein sich mit Geschwindigkeit \(\vec{v_0}=v_0 \hat{x}\) durch ein Fluid bewegender Zylinder mit Radius \(R\). Es wird in Zylinderkoordinaten \((r,\varphi,z)\) gerechnet, wobei die \(z\)-Dimension irrelevant für die Rechnung ist. Aufgrund der Annahmen (inkompressibel, inviskos, wirbelfrei) gilt folgendes: \begin{align} \frac{\mathrm{d} \rho}{\mathrm{d} t} = 0\ ,\ \frac{\partial \rho}{\partial t} + \vec{\nabla}\cdot(\rho\vec{v}) = \frac{\mathrm{d} \rho}{\mathrm{d} t} + \rho (\vec{\nabla}\cdot\vec{v}) = 0 \ \Rightarrow\ \vec{\nabla}\cdot\vec{v}=0\\ \vec{\nabla}\times\vec{v}=0 \ \Rightarrow\ \exists \phi : \vec{v} = \vec{\nabla} \phi \end{align} Für das Potential \(\phi\) folgt Aufgrund von \(\vec{\nabla}\cdot\vec{v}=0\), dass \(\Delta\phi = 0\) gilt (Laplace-Gleichung).

Im Unendlichen soll die Geschwindigkeit des Fluids verschwinden, d.h. \( \vec{v} \xrightarrow[]{r \to \infty} \vec{0}\).

Für den Rand des Zylinders soll die Relativgeschwindigkeit des Fluids senkrecht zur Oberflächennormale sein, d.h. \(\forall \varphi : (\vec{v}(r=R,\varphi) - v_0 \hat{x})\cdot \hat{n} = 0 \).

Es ist also eine Lösung der Laplace-Gleichung auf \( \mathbb{R}^2 \setminus B_R(0) \) gesucht, welche im Unendlichen einen verschwindenden Gradienten hat und auf \( \partial B_R(0) \) die Neumann-Randbedingung \( \partial_n \phi = v_0 \hat{n}\cdot\hat{x} \) erfüllt. Die Fundamentallösungen der Laplace-Gleichung inspirieren folgenden Ansatz: \begin{align} \phi(r,\varphi) = \frac{c(\varphi)}{r} \end{align} Für beschränkte \( c(\varphi) \) verschwindet das Potential und die Geschwindigkeit im Unendlichen. Einsetzen in die Laplace-Gleichung liefert die folgende Bedingung an \( c(\varphi) \): \begin{align} c^{\prime\prime}(\varphi) + c(\varphi) = 0 \ \Rightarrow\ c(\varphi) = A \sin (\varphi) + B \cos (\varphi) \end{align}

Durch die Neumann-Bedingung lassen sich die Koeffizienten bestimmen: \(A = 0\) und \(B=-v_0 R^2\)

Damit ist das gesuchte Potential gefunden: \begin{align} \phi(r,\varphi) = -v_0 R^2 \frac{\cos \varphi}{r} \end{align} Es ergibt sich folgende Flussgeschwindigkeit als Gradient des Potentials: \begin{align} \vec{\nabla}\phi = \vec{v}(r,\varphi) = \frac{R^2}{r^2} v_0 \left[ \hat{r} \cos\varphi + \hat{\varphi} \sin\varphi \right] \end{align}

Für die Flussgeschwindigkeit um einen umströmten statischen Zylinder, wird nun die Geschwindigkeit des bewegten Zylinders subtrahiert. Es ergibt sich: \begin{align} \vec{v}(r,\varphi) = \frac{R^2}{r^2} v_0 \left[ \hat{r} \cos\varphi + \hat{\varphi} \sin\varphi \right] - v_0 \hat{x}\\ \vec{v}(r,\varphi) = \frac{R^2}{r^2} v_0 \left[ \hat{r} \cos\varphi + \hat{\varphi} \sin\varphi \right] - v_0 (\hat{r} \cos\varphi - \hat{\varphi} \sin\varphi)\\ \vec{v}(r,\varphi) = v_0 \left[ \hat{r} (\frac{R^2}{r^2} - 1) \cos\varphi + \hat{\varphi} (\frac{R^2}{r^2} + 1) \sin\varphi \right] \end{align}

Für den Druck lässt sich mit der Bernoulli-Gleichung \(\displaystyle \frac{v^2}{2} + \frac{p}{\rho} = \mathrm{const.}\) folgender Ausdruck herleiten: \begin{align} p=\frac{\rho}{2}v_0^2\left(2\frac{R^2}{r^2}\cos2\varphi-\frac{R^4}{r^4}\right) \end{align}

Methodik zur Bestimmung des Übergangs von L1 in L2

Im Folgenden ist die implementierte Methodik zur Bestimmung des ersten Übergangs von L1 (creeping flow / non-separation regime [0 < RE < 4-5]) zu L2 (closed near-wake regime [4-5 < RE < 30-48]) beschrieben. Der wesentliche Unterschied liegt in der Symmetrie des Flusses bezüglich der y-Achse. Für L1 ist eine hohe Symmetrie zu erwarten, während für L2 aufgrund der sich bildenden Vortices hinter dem Zylinder eine niedrigere Symmetrie zu erwarten ist.

Die Strömungskenngrößen (\(z.B. \rho, \vec{v}\)) sind aufgrund der Numerik diskret, d.h.: \begin{align} t = k\Delta t \ \ \Rightarrow s(\vec{x},t)\ \widehat{=}\ s_i^k \\ \dot{s}_i^{k+\frac{n}{2}} = \frac{s_i^{k+n} - s_i^k}{n\Delta t} \end{align}

Als Maß für die Asymmetrie eines Skalarfelds \(s\) (z.B. \(\rho\)) wird folgende Definition verwendet: \begin{align} A(s) := \frac{1}{2 T} \sum_k \frac{\Delta t_k}{\sum_i \Delta V_i \cdot (s_i^k)^2} \sum_{-\frac{\pi}{2} < \varphi < \frac{\pi}{2}} \Delta V(\varphi) \left[s^k(\varphi) - s^k(\pi - \varphi) \right]^2 \end{align} Diese Definition garantiert, dass für Skalarfelder \(s(x,y) = -s(-x,y)\) die Asymmetrie \(A(s) = 1\) beträgt.