Kalibrierung von Aufgaben für den Adaptiven Kurs (Jack2)
Der Adaptiv Kurs ist ein geplantes Feature und aktuell nur eingeschränkt Nutzbar.
Im Folgenden wird ein Verfahren beschrieben, um einen Adaptiven Kurs manuell (nach dem Rasch-Model?)zu kalibrieren.
Um die Aufgaben für den Adaptiven Kurs zu kalibrieren muss vorher das Folgende beachtet werden:
a) Aktuell ist in Jack ein dichotomisches Modell (4pl <math> p_i({\theta})=c_i + \frac{d_i-c_i}{1+e^{-a_i({\theta}-b_i)}} </math> wobei <math>a_i=1.195</math> ist die maximale Steigung/die Trennschärfe von <math>p_i</math>; <math>b_i</math> die Schwierigkeit der Aufgabe; <math>c_i=0</math> die untere Asymtote; <math>d_i=1</math> die obere Asymtote) implementiert. Das bedeutet im Modell wird angenommen, das nur Richtig oder Falsch als Antwort genommen wird.
b) Es werden Daten wie die Teilnehmer die Aufgaben abgeschlossen haben benötigt.
c) Es wird angenommen, das jeder Teilnehmer jede Aufgabe genau einmal (egal, ob korrekt oder falsch) Absolviert hat.
d) Es wird angenommen, das die Aufgaben voneinander unabhängig sind.
e) Es wird das R-Paket eRm
benötigt.
Schritt 1.
Die Daten werden in eine Matrix eingetragen. Als Zeilen werden die Studenten genommen, als Spalten die Aufgaben. Die jeweiligen Einträge der Matrix entsprechen dem Ergebnis (1 für Korrekt, 0 für Falsch) des einzelnen Teilnehmer zur Aufgabe. Die Einträge der Matrix <math> (a_{ij}),i\in I,j\in J </math>ergeben sich also durch : <math>a_{ij}=\ Ergebnis\ von\ Teilnehmer\ i\ in\ Aufgabe\ j</math>.
Bsp. (aus dem R-Paket "eRm"; P** sind die einzelnen Studenten; I** die Fragen) :
I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12 I13 I14 I15 I16 I17 I18 I19 I20 I21 I22 I23 I24 I25 I26 I27 I28 I29 I30 P1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 P2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 P3 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 P4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 P5 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 P6 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 P7 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 P8 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 P9 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 1 1 0 0 0 0 0 0 P10 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 1 1 0 0 0 P11 1 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 P12 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 P13 1 1 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 P14 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 1 P15 1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 P16 1 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 P17 0 0 0 0 0 0 1 1 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 P18 1 0 1 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 P19 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 1 1 0 0 1 1 0 1 0 0 0 0 0 0 0 P20 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 1 0 0 0 0 1 P21 1 1 1 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 1 0 0 1 P22 1 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 1 0 1 P23 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 1 0 0 P24 0 1 1 0 0 1 1 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 P25 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 1 0 0 1 1 0 0 1 P26 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 P27 0 1 0 0 0 1 0 0 1 0 1 1 0 0 1 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 P28 1 0 1 0 0 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 0 0 1 0 0 0 P29 1 1 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 1 0 1 1 1 0 0 0 1 0 0 0 0 P30 0 1 1 0 1 0 1 1 0 0 0 1 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 P31 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 0 0 1 0 1 0 1 P32 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 1 0 1 0 1 0 1 0 1 P33 0 1 0 0 0 0 1 0 0 1 0 1 0 0 1 0 1 1 0 1 1 0 1 0 0 0 1 0 0 0 P34 1 1 0 0 0 1 0 1 1 0 0 1 0 0 0 0 1 0 0 0 1 1 1 0 1 0 0 0 0 0 P35 0 0 1 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 0 0 0 1 P36 1 0 1 0 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 1 1 1 0 0 0 0 0 1 P37 1 0 1 1 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 1 1 1 1 0 0 1 1 0 0 0 P38 0 0 1 0 0 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 0 1 1 0 0 1 P39 1 1 0 0 0 1 0 1 1 0 0 0 0 0 0 1 1 0 0 1 0 1 0 1 0 1 0 0 0 1 P40 1 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 0 1 1 0 0 1 P41 1 0 0 0 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 1 1 1 1 0 0 1 0 0 1 1 P42 1 1 1 0 1 0 0 1 0 0 0 1 0 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 1 P43 1 1 1 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 1 1 1 0 1 1 0 0 1 0 P44 1 0 1 0 0 0 0 1 1 0 0 0 0 0 0 1 0 1 0 1 1 1 1 0 0 1 1 0 0 1 P45 1 1 1 0 0 1 0 1 1 0 0 1 0 0 0 1 1 0 0 0 1 1 1 0 0 0 0 0 1 0 P46 1 1 1 1 1 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 1 1 0 0 1 1 1 0 0 P47 1 0 1 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 1 1 1 0 0 0 1 0 1 0 0 P48 1 0 1 0 0 0 1 0 1 0 1 1 0 1 1 0 0 0 1 0 1 1 1 0 0 1 0 0 0 1 P49 1 1 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 1 0 0 1 1 0 0 1 1 1 1 1 0 P50 1 1 1 0 1 0 1 1 1 0 1 0 0 1 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 1 P51 1 0 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 0 0 1 0 1 1 0 0 0 1 1 0 1 P52 1 0 1 0 0 0 1 0 1 0 1 1 0 0 0 1 1 1 0 1 1 0 1 0 0 1 0 0 0 1 P53 0 1 0 0 1 0 1 1 1 0 0 1 1 0 0 0 1 0 1 0 0 0 1 0 1 0 1 0 1 1 P54 1 0 1 1 0 1 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 0 1 1 1 1 0 1 0 1 P55 1 0 1 1 1 0 0 1 1 0 1 1 0 0 1 0 0 0 0 1 0 0 1 1 0 1 1 0 0 1 P56 1 1 1 1 0 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 1 1 0 P57 0 0 1 1 0 0 1 1 0 1 1 1 0 0 0 0 1 0 0 1 1 1 0 1 0 1 1 0 0 1 P58 1 0 1 0 1 0 0 1 1 1 0 1 0 0 1 0 1 0 0 1 1 0 1 1 0 1 0 0 0 1 P59 0 1 1 0 1 1 1 1 1 0 0 0 1 0 0 1 1 0 1 1 0 1 0 0 0 1 1 0 0 0 P60 1 0 1 0 0 1 0 0 1 0 1 1 0 1 1 0 0 1 0 0 1 1 0 1 1 1 0 0 0 1 P61 1 1 1 1 0 1 1 1 1 0 0 1 0 0 1 0 1 1 0 0 1 1 1 0 0 1 0 0 0 0 P62 1 1 1 0 0 0 1 0 1 0 0 0 0 0 1 1 1 1 0 1 1 1 1 0 1 1 1 0 0 0 P63 1 0 1 0 0 0 1 0 0 0 1 1 0 1 0 0 1 0 1 1 1 1 1 1 0 1 0 1 0 1 P64 1 1 0 0 0 1 1 1 0 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 0 1 0 0 0 1 P65 1 0 0 0 0 1 1 1 0 0 0 0 1 0 1 0 1 1 0 1 1 1 0 1 0 1 1 1 0 1 P66 1 0 0 0 0 0 1 1 1 0 0 1 0 0 1 1 1 1 0 0 1 1 0 1 1 1 1 0 1 1 P67 1 0 1 1 0 0 1 1 1 1 1 1 0 0 1 0 0 0 0 1 1 0 0 0 1 1 1 1 0 1 P68 1 0 0 1 0 1 0 1 0 0 1 1 0 0 0 1 1 1 0 1 1 1 1 0 0 1 1 1 0 1 P69 1 0 1 0 1 0 1 1 0 1 0 1 1 0 1 0 1 0 0 1 0 1 1 0 1 1 0 0 1 1 P70 1 1 0 0 0 0 1 0 0 0 0 1 0 0 1 1 0 0 1 1 1 1 1 1 1 1 1 0 1 1 P71 1 0 1 0 0 1 0 1 1 1 1 1 0 0 0 1 0 0 0 1 0 0 1 1 1 1 1 0 1 1 P72 1 1 1 1 0 0 1 1 1 0 1 1 0 0 1 1 1 1 0 0 1 0 0 0 0 1 1 0 0 1 P73 0 0 1 0 1 0 1 1 0 1 0 1 0 0 1 0 0 0 1 0 1 1 1 1 1 1 0 1 1 1 P74 1 1 1 0 1 1 1 1 0 0 0 0 1 0 1 1 1 1 0 1 1 0 0 1 0 1 0 1 0 1 P75 1 1 1 0 0 1 0 1 1 0 0 0 1 0 0 1 0 1 0 0 1 1 1 0 1 1 1 1 1 1 P76 1 1 0 1 0 0 1 1 1 0 1 1 0 0 1 1 1 0 1 0 1 1 0 0 0 1 1 1 0 1 P77 1 1 0 1 0 0 0 1 1 0 0 0 1 0 1 1 0 1 1 1 1 1 1 1 0 1 0 1 1 1 P78 0 0 1 1 0 1 1 1 0 1 1 1 0 0 1 1 0 0 1 1 1 1 1 1 0 1 1 1 0 0 P79 1 1 1 0 0 1 1 1 1 0 1 1 0 0 1 0 1 0 1 1 1 1 1 1 0 1 0 1 0 1 P80 1 1 1 1 0 0 1 1 1 0 1 1 0 0 1 1 1 1 0 1 1 1 0 0 0 0 1 1 1 1 P81 1 0 1 1 0 1 0 1 1 1 1 1 0 0 1 1 1 0 1 0 1 1 1 0 0 1 0 1 1 1 P82 1 0 0 1 1 0 1 1 1 0 0 1 1 1 1 1 1 0 1 0 1 1 1 0 0 1 1 0 1 1 P83 1 1 1 1 0 1 1 1 1 0 1 0 1 0 1 0 1 0 0 0 1 1 1 1 1 1 0 0 1 1 P84 1 1 1 1 0 1 1 0 1 0 0 1 0 1 1 0 0 0 1 1 1 1 1 0 1 1 1 1 1 1 P85 1 1 1 1 0 0 1 1 1 0 1 1 1 0 0 1 1 1 1 1 1 1 0 0 1 1 1 1 0 0 P86 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 0 0 1 0 1 1 1 1 1 1 1 0 1 1 1 P87 1 1 1 1 0 1 1 1 1 0 1 1 1 0 0 0 0 1 1 1 1 1 1 1 0 1 0 0 1 1 P88 1 0 1 1 1 1 1 1 1 0 0 1 0 0 1 0 1 1 0 1 1 1 1 1 1 0 0 1 1 1 P89 1 0 0 1 0 1 1 1 1 1 0 1 0 1 1 1 1 1 0 1 0 1 1 1 0 1 1 1 1 0 P90 1 1 1 0 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 0 1 0 1 0 0 P91 1 0 1 1 0 1 1 1 1 1 1 1 0 0 1 1 1 0 0 1 1 1 0 1 1 1 1 1 0 1 P92 1 0 1 0 0 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1 1 1 1 1 1 0 1 0 1 1 P93 1 1 1 1 1 0 1 1 1 1 0 0 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 0 P94 1 1 1 1 0 1 1 0 1 0 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 P95 1 1 1 1 0 1 1 1 1 1 0 1 1 0 1 0 0 1 1 1 1 1 0 1 1 1 1 1 1 1 P96 1 1 0 0 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 P97 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 P98 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 P99 1 1 1 1 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 P100 1 1 1 1 1 0 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Schritt 2.
Lassen Sie die Werte durch res <- RM(raschdat1, sum0 = TRUE)
berechnen, wobei raschdat1
in diesem Fall die eingebenden Daten sind, und durch summary(res)
die errechneten Werte anzeigen.
Resultat:
> summary(res) Results of RM estimation: Call: RM(X = raschdat1, sum0 = TRUE) Conditional log-likelihood: -1434.482 Number of iterations: 28 Number of parameters: 29 Item (Category) Difficulty Parameters (eta): with 0.95 CI: Estimate Std. Error lower CI upper CI I2 -0.051 0.216 -0.475 0.373 I3 -0.782 0.222 -1.217 -0.347 I4 0.650 0.228 0.204 1.096 I5 1.301 0.254 0.802 1.799 I6 -0.099 0.216 -0.523 0.324 I7 -0.682 0.220 -1.113 -0.250 I8 -0.732 0.221 -1.165 -0.299 I9 -0.534 0.218 -0.961 -0.106 I10 1.108 0.245 0.628 1.587 I11 0.650 0.228 0.204 1.096 I12 -0.388 0.217 -0.813 0.037 I13 1.511 0.267 0.988 2.034 I14 2.116 0.316 1.497 2.735 I15 -0.340 0.216 -0.764 0.085 I16 0.597 0.226 0.154 1.041 I17 -0.340 0.216 -0.764 0.085 I18 0.094 0.217 -0.332 0.520 I19 0.759 0.231 0.306 1.211 I20 -0.682 0.220 -1.113 -0.250 I21 -0.937 0.226 -1.379 -0.495 I22 -0.989 0.227 -1.434 -0.544 I23 -0.682 0.220 -1.113 -0.250 I24 -0.003 0.217 -0.427 0.422 I25 0.814 0.233 0.358 1.271 I26 -1.207 0.234 -1.665 -0.749 I27 0.094 0.217 -0.332 0.520 I28 0.290 0.220 -0.140 0.721 I29 0.759 0.231 0.306 1.211 I30 -0.732 0.221 -1.165 -0.299 Item Easiness Parameters (beta) with 0.95 CI: Estimate Std. Error lower CI upper CI beta I1 1.565 0.249 1.077 2.053 beta I2 0.051 0.216 -0.373 0.475 beta I3 0.782 0.222 0.347 1.217 beta I4 -0.650 0.228 -1.096 -0.204 beta I5 -1.301 0.254 -1.799 -0.802 beta I6 0.099 0.216 -0.324 0.523 beta I7 0.682 0.220 0.250 1.113 beta I8 0.732 0.221 0.299 1.165 beta I9 0.534 0.218 0.106 0.961 beta I10 -1.108 0.245 -1.587 -0.628 beta I11 -0.650 0.228 -1.096 -0.204 beta I12 0.388 0.217 -0.037 0.813 beta I13 -1.511 0.267 -2.034 -0.988 beta I14 -2.116 0.316 -2.735 -1.497 beta I15 0.340 0.216 -0.085 0.764 beta I16 -0.597 0.226 -1.041 -0.154 beta I17 0.340 0.216 -0.085 0.764 beta I18 -0.094 0.217 -0.520 0.332 beta I19 -0.759 0.231 -1.211 -0.306 beta I20 0.682 0.220 0.250 1.113 beta I21 0.937 0.226 0.495 1.379 beta I22 0.989 0.227 0.544 1.434 beta I23 0.682 0.220 0.250 1.113 beta I24 0.003 0.217 -0.422 0.427 beta I25 -0.814 0.233 -1.271 -0.358 beta I26 1.207 0.234 0.749 1.665 beta I27 -0.094 0.217 -0.520 0.332 beta I28 -0.290 0.220 -0.721 0.140 beta I29 -0.759 0.231 -1.211 -0.306 beta I30 0.732 0.221 0.299 1.165
Estimate
ist die "Schwierigkeit".
Zusatz: Die Errechneten Fähigkeitswerte der Prüflinge kann durch personal.parameter(res)
ausgegeben werden.