RandomMatrixEigenvalue: Unterschied zwischen den Versionen

Aus JACK Wiki
Zur Navigation springen Zur Suche springen
Keine Bearbeitungszusammenfassung
Keine Bearbeitungszusammenfassung
Zeile 17: Zeile 17:


===Beispiele===
===Beispiele===
  randomMatrixEigenvalue(qq(),2,list(1,2),list(1,1))
  randomMatrixEigenvalue(qq(),2,list(1,2),list(1,1))  --> returns \((51212)\)
   
   
  randomMatrixEigenvalue(qq(),3,list(2,3,4),list(1,1,1))
  randomMatrixEigenvalue(qq(),3,list(2,3,4),list(1,1,1))  --> returns \((013241215)\)


===Hinweise===
===Hinweise===
* Mit der Funktion [[evaluateInSage]] lassen sich die Eigenschaften der Matrix abfragen, z.B.
* Mit der Funktion [[evaluateInSage]] lassen sich die Eigenschaften der Matrix abfragen, z.B.
  evaluateInSage('[var=Matrix].is_diagonalizable()')    --> Gibt ''true'' zurück, wenn die Matrix diagonalisierbar ist
  evaluateInSage('[var=Matrix].is_diagonalizable()')    --> returns ''true'' zurück, wenn die Matrix diagonalisierbar ist


[[Kategorie:Math-Evaluatorfunktion]][[Kategorie:lineare Algebra]]
[[Kategorie:Math-Evaluatorfunktion]][[Kategorie:lineare Algebra]][[Kategorie:JACK2]][[Kategorie:JACK3]]

Version vom 12. April 2024, 12:38 Uhr

Zugehörige Evaluatoren

  • MathEvaluator

Beschreibung

Die Funktion randomMatrixEigenvalue gibt eine diagonalisierbare Matrix zurück. Die Funktion wird in Sage bearbeitet. Sie braucht die Matrix, die Eigenwerte und die Dimension der jeweiligen Eigenräume als Eingabewerte und gibt die Matrix zurück.

Syntax

randomMatrixEigenvalue(Zahlenraum zahlenraum, Ganzzahl zahl, List eigenwerte, List dimension)

Parameter

  • zahlenraum - Gibt an, ob die Matrix als Matrix über die ganzen Zahlen zz(), über die rationalen Zahlen qq() oder als Matrix über den reellen Zahlen rr() aufgefasst werden soll.
  • zahl - Gibt die Anzahl der Zeilen und Spalten der nxn-Matrix an: 1 -> 1x1, 2 -> 2x2, 3 -> 3x3, ..., n -> nxn
  • eigenwerte - Gibt die Eigenwerte der Matrix an.
  • dimension - Gibt die Dimension der jeweiligen Eigenräume an. Dabei ist der Index derselbe wie bei dem zugehörigen Eigenwert.

Return Value

Beispiele

randomMatrixEigenvalue(qq(),2,list(1,2),list(1,1))   --> returns \(\begin{pmatrix}5 && 12\\-1 && -2\end{pmatrix}\)

randomMatrixEigenvalue(qq(),3,list(2,3,4),list(1,1,1))   --> returns \(\begin{pmatrix}0 && -1 && 3\\2 && 4 && -1 \\ -2 && -1 && 5\end{pmatrix}\)

Hinweise

  • Mit der Funktion evaluateInSage lassen sich die Eigenschaften der Matrix abfragen, z.B.
evaluateInSage('[var=Matrix].is_diagonalizable()')    --> returns true zurück, wenn die Matrix diagonalisierbar ist