
GReQL-Reference Card
Daniel Bildhauer, Tassilo Horn and Eckhard Großmann

April 2, 2014

1 Data types

Name Signature sign Description
Boolean BOOL Holds a boolean value.
Integer INT Holds a 32 bit signed integer value.
Long LONG Holds a 64 bit signed integer value.
Double DOUBLE Holds a 64 bit floating point value.
Object OBJECT Is the super type for all types.
String STRING Holds a string value.
Enum ENUM Holds an enum constant.
Collection COLLECTION<E> Represents the abstract super type of List and Set.
List LIST<E> Represents an ordered list of elements of type E.
Set SET<E> Represents an ordered set of values of type E.
Bag BAG<E> Represents a bag of values of type E. Multiple occurrences are counted.
Map MAP<Key,Value> Represents a map from domain Key to range Value.
Table TABLE Represents a table with named columns. Every element in one column belongs to the same type.
Tuple TUPLE Represents a tuple, where every element can be of a different type.
Record RECORD Represents a tuple with named elements. It is similar to a struct in C.
AttributedElement ATTRELEM Abstract super type of Graph, Vertex and Edge.
Vertex VERTEX Represents a vertex (node) in a Graph.
Edge EDGE Represents an edge between two Vertex objects in a Graph.
Graph GRAPH Represents a graph.
SubGraph SUBGRAPH Represents a part of a Graph.

Path PATH Describes a path through a graph as a list of vertices and their connecting edges. v1
e1→v2

e2→v3
PathSystem PATHSYSTEM Represents a tree-like set of paths with a common start vertex, which is the root of the pathSystem.

For every leaf vertex, there is exactly one path.
Slice SLICE Similar to pathSystem, but there may be more than one path to a vertex stored in a slice. Only one

edge is considered if multiple edges of the same type connect the same two vertices.
AttributedElementClass ATTRELEMCLASS Represents a type of the schema.
TypeCollection TYPECOLLECTION Stands for a TypeDescription, see TypeDescription in section 2.3.

1

2 Literals & Expressions
2.1 Literals

Name Description Example
BooleanLiteral Boolean value with two values: true and false. true

false
IntegerLiteral, LongLit-
eral

A signed integer value. Can be written as octal, decimal or hexadecimal value. The type of the
literal is adjusted to best fit the value (Integer, Long, Double). Numeric literals must start with
a digit or a hyphen followed by a digit (negative values)

0, -23 (Decimal notation)
-051, 022 (Octal notation)
0x2f, 0x65 (Hexadecimal notation)

DoubleLiteral A 64 bit floating point decimal value in scientific notation. Numeric literals must start with a
digit or a hyphen followed by a digit (negative values).

0.0, -2.3 (Decimal notation)
23e-7 (Exponent notation)

StringLiteral A character sequence enclosed in single or double quotes. Quotes inside a string literal must
be escaped with a backslash.

"A string"
"This is a double quote: \"."

2.2 Regular path expressions
For a better understanding an example schema and an instance graph is illustrated in figure 1.

Figure 1: left: A schema for a graph. right: An instance graph for the given schema.

In the following exp is an expression. p, p1 and p2 are path descriptions.

Name Description Example
2

Name Description Example
EdgeRestriction Describes a comma separated set of edge types and roles and an optional predicate prefixed with

@, in which thisEdge denotes the edge itself. The restriction matches all edges which have
one of the types or roles and for which the predicate holds.
The operators ! and ^ are also valid. See TypeDescription in section 2.3.

{Street} // e2, e3, e4 and e5 are selected
{Way, to @ thisEdge.length <= 300}

// e1, e2 and e5

SimplePathDescription A simple path description p consists of an edge symbol --> (outgoing) , <-- (incoming),
<-> (direction doesn’t matter), <>-- (parent to child) or --<> (child to parent) and
optionally an EdgeRestriction in curly braces.

-->{Street @ thisEdge.name == ""}
// e1

<--
--<>{@ true}

EdgePathDescription A edge path description matches exactly one edge, given as expression exp. The form is
--exp->, <-exp-> or <-exp--.

-- getEdge(1) ->

SequentialPathDescription Sequential use of path descriptions is supported: p1 p2. --> --<>
OptionalPathDescription A path description can be marked as optional by surrounding it with brackets: [p] [-->]
IteratedPathDescription Iteration of path description with the use of Kleene operators * and + where p* means, p is

executed 0 or many times and p+ means, p is executed at least once. Similar, p^n denotes
a fixed number n of iterations.

-->+
-->*
-->^2

AlternativePathDescription Marking paths as alternative is possible by separating them with a pipe: p1 | p2. --> | --<>
GroupPathDescription To group multiple path descriptions, simply surround them with two braces: (p) --> (--> | --<>)
StartVertexRestriction or
GoalVertexRestriction

The start and end vertices of a path description can be restricted. Therefore, the restriction is
separated from the path description with a &. Its syntax is similar to an EdgeRestriction, but
only Vertex types and no role names are allowed. thisEdge is replaced by thisVertex.
{VertexType} & p // Start vertex is restricted
p & {VertexType} // Goal vertex is restricted

{CarPark} & -->
--> & {CarPark

@ thisVertex.capacity > 100}

2.3 Expressions
The root node of any GReQL query is a GReQLExpression. Every example is given in one row. Continuing examples are indented.

Name Description Example
GReQLExpression Every GReQL query is a GReQLExpression and contains one arbitrary other expression as child

to be evaluated. Storing and reuse of query results is possible by the use of using (prefix)
and store as (suffix) clause.

list(1..10) store as myList
using myList : isUnique(myList)

ValueConstruction Collections, tuples, maps and records can be constructed using a value construction which specifies
the data type and its elements. Types can be list (List), set (Set), tup (Tuple), map
(Map) and rec (Record). The member elements are denoted by a comma separated list of
expressions. For Set, List and Map, the expression’s results must be of the same type. In case
of a Map each argument has an unique key assigned. In case of a Record each argument recives
has a unique name assigned.
Additionally, instead of arguments a range [a, b] can be defined in a list construction:
list(a..b)

list(1..10)
list(1,2,3,4,5,6,7,8,9,10)
set(1,1,1,2)
tup("Hello","World", 42)
map("a" -> 1, "b" -> 2)
rec(name: "Max", alter: 18)

Variable Variables declared in iteration expressions or denoting results of other expressions. x
thisVertex
thisEdge

LetExpression Definition of variables to be used in a query. let x := 10, y:= 12 in x+y // Returns 22.
3

Name Description Example
WhereExpression Definition of variables to be used in a query. x+y where x := 10, y:= 12 // Returns 22.
AttributeAccess Access to attributes of elements and records. street.length // ’street’ is of type Street
ElementAccess Access to an element of a list or tuple. list(1..10)[5] // Returns 6.
UnaryOperator Application of an unary operator on an expression. - 2, - (3 + 4)

not true
BinaryOperator Application of a binary operator on two expressions. 1 + 2

true <> false
17 * 4, 23 >= 5

FunctionApplication Application of a GReQL function, optionally with some expressions as parameters and type
restriction.

degree{Street}(getVertex(1)) // 2
isAcyclic() // true
contains(list(1..9), 1) // true

TypeDescription Describes a set of valid types from the schema and can be used as a TypeCollection as input
of a GReQL function. In general, the type description is a comma separated list of types. A type
marked with ! (suffix) means, only this type and no subtypes. A type marked with ^ (prefix)
means, not this type or subtypes.

{Street!} // Only Street and not Bridge is selected.
{^Street} // Street and Bridge are not selected.

EdgeSetExpression Selects all edges from the current graph and returns them as a Set. Optionally, the selection can
be restricted by a TypeDescription.

E // All edges.
E{Street!} // Only edges of type Street.

VertexSetExpression Selects all vertices from the current graph and returns them as a Set. Optionally, the selection
can be restricted by a TypeDescription.

V // All vertices.
V{^Way} // All vertices except Way and all subtypes.

FWRExpression Allows an iteration over collections and reporting of entries as a Table, Set, Map or Bag, whose
contained elements are defined by expressions. The first part of FWR is from, which is followed
by a comma-separated list of declarations. A declaration consists of a variable name v and
a Collection C and is written as v:C. The optional second part is with an with and an
expression, which has to have a Boolean as a result. The last part begins with report and
is followed by comma-separated expressions. Optionally, the column of the resulting table for
an expression e can be named with a string s: e as s. The whole expression is completed
by end. The result is a table. Additionally, the resulting type can be changed, by using
reportSet (Set), reportMap (Map) or reportBag (Bag) instead of report.

from n:list(1..6)
with n % 2 == 0
reportSet n

end // Returns even numbers: {2,4,6}.

from s:E{Street}
with s.length <= 0
report s as "illegalStreet",

s.length as "length"
end // Returns streets, which can’t exist!

QuantifiedExpression Checks, if all (forall), at least one (exists) or exactly one (exists!) element(s) of a
collection fulfill a given expression. After one of the mentioned quantifiers, one or more variables
are declared using a declaration (see FWRExpression). Separated by an @, the expression to
be tested for is specified. The respective Boolean value is returned.

forall v:V @ getId(v) > 0
// Should always be true.

exist! n:list(1..9) @ n % 2 == 0
// Is always false.

3 Functions
A function can be called by writing the function name followed by its parameter list enclosed in braces. For example the function and as and(a, b). Some functions can be used as infix or prefix
operators. The function and for example can also be called with its infix notation: a and b. The function not is an example for a prefix operator and is called as not true.

Some functions have a TYPECOLLECTION in their signature. This means, they can be restricted by a type description, which muss be written between the function name and its parameter list in curly
braces. Also see TypeDescription and FunctionApplication in section 2.3.

4

3.1 Arithmetics
abs. Calculates the absolute value of the given number.
abs : Numbera−→Number

add. Adds the given two numbers with the usual Java overflow semantics. Can be used as operator:
a+b.
add : Numbera×Numberb−→Number

bitAnd. Calculates the bitwise AND of the given two numbers.
bitAnd : Integera×Longb−→Long
bitAnd : Longa×Integerb−→Long
bitAnd : Longa×Longb−→Long
bitAnd : Integera×Integerb−→Integer

bitNot. Calculates the bitwise negation of the given number.
bitNot : Integera−→Integer
bitNot : Longa−→Long

bitOr. Calculates the bitwise OR of the given two numbers.
bitOr : Integera×Longb−→Long
bitOr : Longa×Integerb−→Long
bitOr : Longa×Longb−→Long
bitOr : Integera×Integerb−→Integer

bitShl. Shifts the first number by the second argument’s number of bits to the left.
bitShl : Integera×Integerb−→Integer
bitShl : Longa×Integerb−→Long

bitShr. Shifts the first number by the second argument’s number of bits to the right.
bitShr : Integera×Integern−→Integer
bitShr : Longa×Integern−→Long

bitUnsignedShr. Shifts the first number by the second argument’s number of bits to the right
(unsigned).
bitUnsignedShr : Integera×Integern−→Integer
bitUnsignedShr : Longa×Integern−→Long

bitXor. Calculates the bitwise XOR of the given two numbers.
bitXor : Integera×Longb−→Long
bitXor : Longa×Integerb−→Long
bitXor : Longa×Longb−→Long
bitXor : Integera×Integerb−→Integer

ceil. Returns the ceiling of the given number.
ceil : Numbera−→Number

cos. Returns the cosinus of the given number.
cos : Numbera−→Double

div. Returns the quotient of dividing the first by the second number.
div : Numbera×Numberb−→Number

exp. Returns Euler’s number e raised to the power of the given number.
exp : Numbera−→Double

floor. Returns the floor of the given number.
f loor : Numbera−→Number

ln. Returns the natural logarithm of the given number.
ln : Numbera−→Double

mod. Calculates the remainder of the division a/b. Alternative usage: a % b.
mod : Numbera×Numberb−→Number

mul. Multiplies the given two numbers with the usual Java overflow semantics. Can be used as
operator: a * b.
mul : Numbera×Numberb−→Number

neg. Negates the given number. Can be used as unary operator: -x.
neg : Numbera−→Number

round. Rounds the given number.
round : Numbera−→Long

sin. Returns the sinus of the given number.
sin : Numbera−→Double

sqrt. Returns the square root of the given number.
sqrt : Numbera−→Double

sub. Substracts the second number from the first number with the usual Java overflow semantics.
Can be used as operator: a - b.
sub : Numbera×Numberb−→Number

tan. Returns the tangens of the given number.
tan : Numbera−→Double

toDouble. Converts a Number into a Double.
toDouble : Numbera−→Double

toInteger. Converts the given number into an Integer.
toInteger : Numbera−→Integer

toLong. Converts the given number into a Long.
toLong : Numbera−→Long

3.2 Collections and maps
concat.
concat : Collectiona×Collectionb−→List

Concatenates collections. Can be used as infix operator: a ++ b.

5

contains.
contains : Collectionc×Object el−→Boolean

Returns true, iff c contains el.

containsKey. Returns true, iff the map contains the key.
containsKey : Mapmap×Object key−→Boolean

containsValue. Returns true, iff the given map contains value.
containsValue : Mapmap×Object value−→Boolean

count.
count : Collectionl−→Integer

Returns the number of items in the given collection.
count : Mapm−→Integer

Returns the number of items in the given map.

difference.
di f f erence : Set a×Set b−→Set

Returns the set-difference a-b.
di f f erence : Mapa×Mapb−→Map

Returns the map-difference a-b, w.r.t. the keyset of the maps.

entrySet. Returns the set of entries of the map.
entrySet : Mapmap−→Set

get.
get : Tuplet×Integer i−→Object

Returns the i-th of tuple t. Short notation: t[i]
get : List v×Integer i−→Object

Returns the value stored in v at index i. Short notation: v[i]
get : Tablet×Integer i−→Object

Returns the value stored in t at index i. Short notation: t[i]
get : Set s×Integer i−→Object

Returns the value stored in s at index i. Short notation: s[i].
get : Mapmap×Object key−→Object

Returns the map value associated with key. Short notation: map[key]

indexOf.
indexOf : Object el×Set s−→Integer

Returns the index of the first occurence of el in s, or -1 if el is not in s.
indexOf : Object el×List v−→Integer

Returns the index of the first occurence of el in v, or -1 if el is not in v.

intersection. Returns the intersection of a and b.
intersection : Set a×Set b−→Set

isSubSet. Returns true, iff the sub is subset of s.
isSubSet : Set sub×Set s−→Boolean

keySet. Returns the set of keys of the map.
keySet : Mapmap−→Set

max.
max : Collectionl−→Comparable

Returns the maximum of a collection of comparable things.

min.
min : Collectionl−→Comparable

Returns the minimum of a collection of comparable things.

pos. Returns the position of the first occurence of the given element in the given collection, or -1,
if the element is not contained in the collection.
pos : List l×Object x−→Integer
pos : Set l×Object x−→Integer

sort. Sorts the given collection according to natural ordering.
sort : Tuplel−→List
sort : Collectionl−→List

sortByColumn.
sortByColumn : Integercolumn×Tablet−→Table

Sorts a table of tuples by one column.
sortByColumn : List columns×Tablet−→Table

Sorts a table of tuples by many columns.
sortByColumn : Integercolumn×Collectionl−→List

Sorts a collection of tuples by one column.
sortByColumn : List columns×Collectionl−→List

Sorts a collection of tuples by many columns.

subCollection.
subCollection : Set coll×IntegerstartIndex−→Set

Returns a sub PSet starting at the given start index (including).
subCollection : Set coll×IntegerstartIndex×IntegerendIndex−→Set

Returns a sub PSet starting at the given start index (including), and ending at the given end index
(excluding).

subCollection : List coll×IntegerstartIndex−→List
Returns a sub PVector starting at the given start index (including).

subCollection : List coll×IntegerstartIndex×IntegerendIndex−→List
Returns a sub PVector starting at the given start index (including), and ending at the given end index
(excluding).

theElement. Returns the only element in the given collection. If the collection is empty or contains
more than one element, an exception is thrown.
theElement : List c−→Object
theElement : Set c−→Object

6

toList. Converts a collection into a list.
toList : Tuplel−→List
toList : Collectionl−→List

toSet. Converts a collection into a set (removes duplicates).
toSet : Tuplec−→Set
toSet : Collectionc−→Set

union.
union : Set a×Set b−→Set

Computes the union of the given two sets.
union : Mapa×Mapb−→Map

Computes the union of the given maps. In case of common keys in maps, the entries of the second
one override the first one’s entries.

values. Returns the collection of values of the given map.
values : Mapmap−→List

3.3 Graph
alpha. Returns the start vertex of an edge.
alpha : Edgee−→Vertex

alphaIncidenceIndex.
alphaIncidenceIndex : Edgee−→Integer

Returns the index of e in the incidence sequence of its alpha vertex.
alphaIncidenceIndex : Edgee×Vertexv−→Integer

Returns the index of e in the incidence sequence of v. Returns -1 if e is not in v’s incidence sequence.

degree.
degree : Vertexv×Path p−→Integer

Returns the degree of vertex v. The scope is limited by a path, a path system.
degree : Vertexv×TypeCollectionc−→Integer

Returns the degree of vertex v. The scope is limited by a type collection.
degree : Vertexv−→Integer

Returns the degree vertex v.

describe. Returns a human-readable description of the given element.
describe : AttributedElement el−→Map

edgeSetSubgraph. Returns the subgraph induced by the edge set, i.e. the egdes in edgeSet together
with their alpha and omega vertices.
edgeSetSubgraph : Graphgraph×CollectionedgeSet−→SubGraphMarker

edgeTypeSubgraph. Returns the subgraph induced by the edge types in typeCollection, i.e. all
edges specified by typeCollection together with their alpha and omega vertices.
edgeTypeSubgraph : Graphgraph×TypeCollectiontypeCollection−→SubGraphMarker

edges.
edges : PathSystem p−→Set

Returns the set of edges in the given path system.

edgesConnected.
edgesConnected : Vertexv−→List

(deprecated, use incidences) Returns the list of edges of the given vertex.
edgesConnected : Vertexv×TypeCollectiontc−→List

(deprecated, use incidences) Returns the list of edges of the given vertex restricted by a type collection.

edgesFrom.
edgesFrom : Vertexv−→List

(deprecated, use outIncidences) Returns the list of outgoing edges of the given vertex.
edgesFrom : Vertexv×TypeCollectiontc−→List

(deprecated, use outIncidences) Returns the list of outgoing edges of the given vertex restricted by
a type collection.

edgesTo.
edgesTo : Vertexv−→List

(deprecated, use inIncidences) Returns the list of incoming edges of the given vertex.
edgesTo : Vertexv×TypeCollectiontc−→List

(deprecated, use inIncidences) Returns the list of incoming edges of the given vertex restricted by
a type collection.

elementSetSubgraph. Returns the subgraph consisting of all vertices in vset and all edges in eset
that connect vertices in vset.
elementSetSubgraph : Graphg×Collectionvset×Collectioneset−→SubGraphMarker

endVertex.
endVertex : Edgee−→Vertex

Returns the end vertex of the given edge.

extractPaths.
extractPaths : PathSystem p−→Set

Returns the set of Paths in the PathSystem p.

first.
f irst : Vertexv−→Edge

Returns the first incident edge of vertex v.
f irst : Vertexv×TypeCollectionc−→Edge

Returns the first incident edge of vertex v. The scope is limited by a type collection.

firstEdge.
f irstEdge : Graphg−→Edge

Returns the first edge of the graph g.
f irstEdge : Graphg×TypeCollectionc−→Edge

Returns the first edge of the graph g. The scope is limited by a type collection.

firstIn.
f irstIn : Vertexv−→Edge

Returns the first incoming edge of vertex v.
f irstIn : Vertexv×TypeCollectionc−→Edge

Returns the first incoming edge of vertex v. The scope is limited by a type collection.
7

firstOut.
f irstOut : Vertexv−→Edge

Returns the first outgoing edge of vertex v.
f irstOut : Vertexv×TypeCollectionc−→Edge

Returns the first outgoing edge of vertex v. The scope is limited by a type collection.

firstVertex.
f irstVertex : Graphg−→Vertex

Returns the first vertex of the graph g.
f irstVertex : Graphg×TypeCollectionc−→Vertex

Returns the first vertex of the graph g. The scope is limited by a type collection.

getEdge. Returns the edge with the given id.
getEdge : Graphgraph×Integer id−→Edge

getValue.
getValue : AttributedElement el×Stringname−→Object

Returns the value of the given element’s attribute specified by its name. Can be used using the
dot-operator: myElement.attrName.

getValue : Record rec×Stringname−→Object
Returns the value of the given record’s component specified by its name. Can be used using the
dot-operator: myRecord.compName.

getVertex. Returns the vertex with the given id.
getVertex : Graphgraph×Integer id−→Vertex

id. Returns the id of the given graph element.
id : GraphElement el−→Integer

inDegree.
inDegree : Vertexv×Path p−→Integer

Returns the in-degree of the given vertex. The scope is limited by a path, a path system.
inDegree : Vertexv×TypeCollectionc−→Integer

Returns the in-degree of the given vertex. The scope is limited by a type collection.
inDegree : Vertexv−→Integer

Returns the in-degree of the given vertex.

inIncidences.
inIncidences : Vertexv−→List

Returns the incoming edges of vertex v.
inIncidences : Vertexv×TypeCollectionc−→List

Returns the incoming edges of vertex v. The scope is limited by a type collection.

incidenceIndex.
incidenceIndex : Edgee×Vertexv−→Integer

Returns the index of e in the incidence sequence of v. Returns -1 if e is not in v’s incidence sequence.

incidences.
incidences : Vertexv−→List

Returns the incident edges of vertex v.
incidences : Vertexv×TypeCollectionc−→List

Returns the incident edges of vertex v. The scope is limited by a type collection.

inverseEdge.
inverseEdge : Edgee−→Edge

Returns the inverse-oriented edge of the given edge e. I.e., if e is a normal (forward-oriented) edge,
returns the reversed (backward-oriented) edge and vice versa.

isAcyclic. Returns true, iff the graph is acyclic.
isAcyclic : Graphg−→Boolean

isLoop. Returns true, iff the given edge is a loop, i.e. it starts and ends at the same vertex.
isLoop : Edgee−→Boolean

isReachable. Returns true, iff there is a path from vertex given as first argument to vertex given as
second argument that matches the path description given as second argument. Usually invoked like
so: myVertex (–> | <>–)+ myOtherVertex.
isReachable : Vertexu×Vertexv×DFAd fa−→Boolean

last.
last : Vertexv−→Edge

Returns the last incident edge of vertex v.
last : Vertexv×TypeCollectionc−→Edge

Returns the last incident edge of vertex v. The scope is limited by a type collection.

lastIn.
lastIn : Vertexv−→Edge

Returns the last incoming edge of vertex v.
lastIn : Vertexv×TypeCollectionc−→Edge

Returns the last incoming edge of vertex v. The scope is limited by a type collection.

lastOut.
lastOut : Vertexv−→Edge

Returns the last outgoing edge of vertex v.
lastOut : Vertexv×TypeCollectionc−→Edge

Returns the last outgoing edge of vertex v. The scope is limited by a type collection.

leaves.
leaves : PathSystem p−→Set

Returns the set of leaf vertices in the given path system.

next.
next : Edgee−→Edge

Returns the next edge following e in incidence order.
next : Edgee×TypeCollectionc−→Edge

Returns the next edge following e in incidence order. The scope is limited by a type collection.

8

nextGraphElement.
nextGraphElement : Edgee×TypeCollectiontc−→Edge

Returns the next edge for a given element, restricted by a type collection.
nextGraphElement : Vertexv−→Vertex

Returns the next vertex for a given element.
nextGraphElement : Vertexv×TypeCollectiontc−→Vertex

Returns the next vertex for a given element, restricted by a type collection.
nextGraphElement : Edgee×Booleanglobal×TypeCollectiontc−→Edge

Returns the next edge for a given element, restricted by a type collection. The boolean parameter
global decides if successor is taken from the global edge sequence (true), or from the incidence
sequence (false).

nextGraphElement : Edgee×Booleanglobal−→Edge
Returns the next edge for a given element. The boolean parameter global decides if successor is
taken from the global edge sequence (true), or from the incidence sequence (false).

nextGraphElement : Edgee−→Edge
Returns the next edge for a given element from the incidence sequence.

nextIn.
nextIn : Edgee−→Edge

Returns the next incoming edge following e in incidence order.
nextIn : Edgee×TypeCollectionc−→Edge

Returns the next incoming edge following e in incidence order. The scope is limited by a type
collection.

nextOut.
nextOut : Edgee−→Edge

Returns the next outgoing edge following e in incidence order.
nextOut : Edgee×TypeCollectionc−→Edge

Returns the next outgoing edge following e in incidence order. The scope is limited by a type
collection.

normalEdge.
normalEdge : Edgee−→Edge

Returns the forward-oriented edge of the given edge e. If e is already forward-oriented simply
returns e.

omega. Returns the end vertex of an edge.
omega : Edgee−→Vertex

omegaIncidenceIndex.
omegaIncidenceIndex : Edgee−→Integer

Returns the index of e in the incidence sequence of its omega vertex.
omegaIncidenceIndex : Edgee×Vertexv−→Integer

Returns the index of e in the incidence sequence of v. Returns -1 if e is not in v’s incidence sequence.

outDegree.
outDegree : Vertexv×Path p−→Integer

Returns the out-degree of the given vertex. The scope is limited by a path, a path system.
outDegree : Vertexv×TypeCollectionc−→Integer

Returns the out-degree of the given vertex. The scope is limited by a type collection.
outDegree : Vertexv−→Integer

Returns the out-degree of the given vertex.

outIncidences.
outIncidences : Vertexv−→List

Returns the outgoing edges of vertex v.
outIncidences : Vertexv×TypeCollectionc−→List

Returns the outgoing edges of vertex v. The scope is limited by a type collection.

path. Returns the shortest path between v1 and v2 matching the path description pd.
path : Vertexv1×DFA pd×Vertexv2−→Path

pathLength. Returns the length of the given Path.
pathLength : Path p−→Integer

reachableVertices. Returns all vertices that are reachable from the given vertex by a path matching
the the given path description.
reachableVertices : Vertexv×DFAd fa−→Set

reversedEdge.
reversedEdge : Edgee−→Edge

Returns the backward-oriented edge of the given edge e. If e is already backward-oriented simply
returns e.

slice.
slice : Vertexv×DFAd fa−→SubGraphMarker

Returns a SubGraphMarker, starting at the given root vertex and being structured according to the
given path description.

slice : Set roots×DFAd fa−→SubGraphMarker
Returns a SubGraphMarker, starting at the given root vertices and being structured according to
the given path description.

startVertex.
startVertex : Edgee−→Vertex

Returns the start vertex of a given edge.

that. Returns the far vertex of an oriented edge.
that : Edgee−→Vertex

thatIncidenceIndex.
thatIncidenceIndex : Edgee−→Integer

Returns the index of e in the incidence sequence of its that-vertex.
thatIncidenceIndex : Edgee×Vertexv−→Integer

Returns the index of e in the incidence sequence of v. Returns -1 if e is not in v’s incidence sequence.

9

this. Returns the near vertex of an oriented edge.
this : Edgee−→Vertex

thisIncidenceIndex.
thisIncidenceIndex : Edgee−→Integer

Returns the index of e in the incidence sequence of its this-vertex.
thisIncidenceIndex : Edgee×Vertexv−→Integer

Returns the index of e in the incidence sequence of v. Returns -1 if e is not in v’s incidence sequence.

topologicalSort. Returns a list of vertices in topological order, iff the graph g is acyclic. Otherwise,
the result is undefined.
topologicalSort : Graphg−→List

vertexSetSubgraph. Returns the subgraph induced by the vertex set, i.e. the vertices in vertexSet
together with all edges between vertices in vertexSet.
vertexSetSubgraph : Graphgraph×CollectionvertexSet−→SubGraphMarker

vertexTypeSubgraph. Returns the subgraph induced by the vertex types in typeCollection, i.e. all
vertices specified by typeCollection together with all edges between those vertices.
vertexTypeSubgraph : Graphgraph×TypeCollectiontypeCollection−→SubGraphMarker

3.4 Logics
and. Logical AND. Can be used as infix operator: a and b.
and : Booleana×Booleanb−→Boolean

not. Logical NOT. Can be used as unary operator: not a.
not : Booleana−→Boolean

or. Logical OR. Can be used as infix operator: a or b.
or : Booleana×Booleanb−→Boolean

xor. Logical XOR, i.e., (a∧¬b)∨(¬a∧b).
xor : Booleana×Booleanb−→Boolean

3.5 Paths and pathsystems and slices
contains.
contains : PathSystem p×GraphElement el−→Boolean

Returns true, iff p contains el.
contains : Path p×GraphElement el−→Boolean

Returns true, iff p contains el.

degree.
degree : Vertexv×Path p−→Integer

Returns the degree of vertex v. The scope is limited by a path, a path system.

depth. Returns the depth of the given path system.
depth : PathSystem p−→Integer

distance. Returns the distance from the root to the given vertex in the given path system.
distance : PathSystem ps×Vertexv−→Integer

edgeTrace. Returns the edge trace of a Path p.
edgeTrace : Path p−→List

edges.
edges : Path p−→List

Returns the list of edges in the Path p.
edges : SubGraphMarkers−→Set

Returns the set of edges in the given slice.

endVertex.
endVertex : Path p−→Vertex

Returns the end vertex of the given path.

inDegree.
inDegree : Vertexv×Path p−→Integer

Returns the in-degree of the given vertex. The scope is limited by a path, a path system.

isReachable. Returns true, iff there is a path from vertex given as first argument to vertex given as
second argument that matches the path description given as second argument. Usually invoked like
so: myVertex (–> | <>–)+ myOtherVertex.
isReachable : Vertexu×Vertexv×DFAd fa−→Boolean

leaves.
leaves : PathSystem p−→Set

Returns the set of leaf vertices in the given path system.

outDegree.
outDegree : Vertexv×Path p−→Integer

Returns the out-degree of the given vertex. The scope is limited by a path, a path system.

pathSystem. Returns a path system with the given root vertex, which is structured according to the
given path description.
pathSystem : VertexstartVertex×DFA fa−→PathSystem

reachableVertices. Returns all vertices that are reachable from the given vertex by a path matching
the the given path description.
reachableVertices : Vertexv×DFAd fa−→Set

slice.
slice : Vertexv×DFAd fa−→SubGraphMarker

Returns a SubGraphMarker, starting at the given root vertex and being structured according to the
given path description.

slice : Set roots×DFAd fa−→SubGraphMarker
Returns a SubGraphMarker, starting at the given root vertices and being structured according to
the given path description.

startVertex.
startVertex : Path p−→Vertex

Returns the start vertex of a given path.

10

vertexTrace. Returns the vertex trace of the given path.
vertexTrace : Path p−→List

vertices.
vertices : Path p−→List

Returns the list of vertices in the Path p.
vertices : SubGraphMarkers−→Set

Returns the set of vertices in the given slice.
vertices : PathSystem p−→Set

Returns the set of vertices in the given path system.

3.6 Reflection
valueType. Returns a String denoting the value type of the given object.
valueType : Object val−→String

3.7 Relations
equals. Determines if a and b are equal. Alternative: a = b
equals : Numbera×Numberb−→Boolean
equals : Enuma×Stringb−→Boolean
equals : Stringa×Enumb−→Boolean
equals : Object a×Object b−→Boolean

grEqual. Determines if a≥b. Alternative: a >= b
grEqual : Numbera×Numberb−→Boolean
grEqual : Comparablea×Comparableb−→Boolean

grThan. Determines if a>b. Alternative: a > b
grThan : Numbera×Numberb−→Boolean
grThan : Comparablea×Comparableb−→Boolean

leEqual. Determines if a≤b. Alternative: a <= b
leEqual : Numbera×Numberb−→Boolean
leEqual : Comparablea×Comparableb−→Boolean

leThan. Determines if a<b. Alternative: a < b
leThan : Numbera×Numberb−→Boolean
leThan : Comparablea×Comparableb−→Boolean

nequals. Determines if a and b are different. Alternative: a <> b
nequals : Numbera×Numberb−→Boolean
nequals : Enuma×Stringb−→Boolean
nequals : Stringa×Enumb−→Boolean
nequals : Object a×Object b−→Boolean

3.8 Schema access
attributeNames.
attributeNames : AttributedElementClasscls−→Set

Returns the set of attribute names of the specified schema class.
attributeNames : AttributedElement el−→Set

Returns the set of attribute names of the specified element.

attributes.
attributes : AttributedElementClasscls−→List

Returns the attribute names and domains of the specified schema class in terms of a vector containing
one map per attribute with the keys name and domain.

attributes : AttributedElement el−→List
Returns the attribute names and domains of the specified element in terms of a vector containing
one map per attribute with the keys name and domain.

hasAttribute.
hasAttribute : AttributedElementClassaec×Stringname−→Boolean

Returns true, iff the attribute given by its name is defined for the given attributed element class.
hasAttribute : AttributedElement el×Stringname−→Boolean

Returns true, iff the attribute given by its name is defined for the given attributed element.

hasComponent. Returns true, iff the given record has a component with the given name.
hasComponent : Record r×Stringname−→Boolean

hasType.
hasType : GraphElement el×TypeCollectiontc−→Boolean

Returns true, iff the given attributed element has an attributed element class accepted by the given
type collection.

hasType : GraphElement el×Stringqn−→Boolean
Returns true, iff the given attributed element has an attributed element class with the given qualified
name.

type. Returns the AttributedElementClass of the given element.
type : AttributedElement el−→AttributedElementClass

typeName.
typeName : AttributedElement el−→String

Returns the qualified name of the given element’s type.
typeName : AttributedElement el×Stringkind−→String

Returns the name of the given element’s type. If kind is "simple", return the simple name. If kind
is "unique", return the unique name. Else, return the qualified name.

11

3.9 Statistics
count.
count : Collectionl−→Integer

Returns the number of items in the given collection.
count : Mapm−→Integer

Returns the number of items in the given map.

isEmpty.
isEmpty : Mapm−→Boolean

Returns true, iff m is empty.
isEmpty : Set s−→Boolean

Returns true, iff s is empty.
isEmpty : List v−→Boolean

Returns true, iff v is empty.

max.
max : Numbera×Numberb−→Number

Returns the maximum of the given two numbers.
max : Collectionl−→Comparable

Returns the maximum of a collection of comparable things.

mean. Returns the mean value of a collection of numbers.
mean : Collectionl−→Double

min.
min : Numbera×Numberb−→Number

Returns the minimum of the given two numbers.
min : Collectionl−→Comparable

Returns the minimum of a collection of comparable things.

sdev. Returns the standard deviation of a collection of numbers. If the collection’s size is less than
2, the standard deviation is undefined.
sdev : Collectionl−→Double

sum. Returns the sum of the given collection of numbers.
sum : Collectionl−→Number

variance. Returns the variance of the given collection of numbers. If the size of the collection is
less than 2, the variance is undefined.
variance : Collectionl−→Double

3.10 Strings
capitalizeFirst. Returns the given string with the first character made uppercase.
capitalizeFirst : Strings−→String

concat.
concat : Stringa×Object b−→String

Concatenates strings. Can be used as infix operator: a ++ b.
concat : Object a×Stringb−→String

Concatenates strings. Can be used as infix operator: a ++ b.

contains.
contains : Strings×Stringsub−→Boolean

Returns true, iff s contains sub.

endsWith. Returns true, iff the String s ends with the given suffix.
endsWith : Stringsu f f ix×Strings−→Boolean

indexOf.
indexOf : Stringsub×Strings−→Integer

Returns the index of the first occurence of sub in s, or -1 if sub is not in s.

join. Joins the strings in the given collection by interleaving with the given delimiter.
join : Collectionl×Stringdelimiter−→String

length. Returns the length of String s.
length : Strings−→Integer

lowerCase.
lowerCase : Strings−→String

Returns s in lowercase letters.

reMatch. Returns true, iff the given string matches the given regular expression. Can be used as
infix operator: myString =~ myRegexp.
reMatch : Strings×Stringregex−→Boolean

replace.
replace : Strings×Stringold×Stringnew−→String

Replaces all occurences of old in s with new.

split. Splits the given string according to the given regular expression and returns the parts as list.
split : Strings×Stringregex−→List

startsWith.
startsWith : String pre f ix×Strings−→Boolean

Returns true, iff the String s starts with the given prefix.
startsWith : String pre f ix×Strings×Integero f f set−→Boolean

Returns true, iff the String s starts with the given prefix, beginning search at the given offset.

substring.
substring : Strings×IntegerbeginIndex−→String

Returns the substring of s starting at beginIndex.
substring : Strings×IntegerbeginIndex×IntegerendIndex−→String

Returns the substring of s from beginIndex (incl) to endIndex (excl).

12

toString. Returns the string representation of the given object.
toString : Object o−→String

upperCase.
upperCase : Strings−→String

Returns s in uppercase letters.

3.11 Miscellaneous
isDefined. Returns true, iff the given object is defined.
isDe f ined : Object val−→Boolean

isUndefined. Returns true, iff the given object is undefined.
isUnde f ined : Object val−→Boolean

log. Logs a line of the form s ++ toString(o) to sysout and returns o.
log : Strings×Object o−→Object

13

