BA Beat Teuber: Difference between revisions

From Arbeitsgruppe Kuiper
Jump to navigation Jump to search
(Created page with "== Herleitung der Kraft in einen Zylinder == \[\vec{F} = \int\limits_\text{O} \sigma \mathrm{d} \vec{A} \] Da \(\vec{A} = A \vec{e}_\mathrm{\rho}\), gilt \[\vec{F} = \int\limits_\text{O} (\sigma_\mathrm{\rho\rho} \vec{e}_\text{r} + \sigma_\mathrm{\varphi\rho} \vec{e}_\mathrm{\rho} + \sigma_{\text{z}\mathrm{\rho}} \vec{e}_\text{z}) \mathrm{d} A\] mit \[\sigma=-p\mathbb{1} + \mu \left( \vec{\nabla} \vec{u} + \left(\vec{\nabla} \vec{u}\right)^\mathrm{T} - \frac{2}{3} \...")
 
Line 5: Line 5:
Da \(\vec{A} = A \vec{e}_\mathrm{\rho}\), gilt
Da \(\vec{A} = A \vec{e}_\mathrm{\rho}\), gilt


\[\vec{F} = \int\limits_\text{O} (\sigma_\mathrm{\rho\rho} \vec{e}_\text{r} + \sigma_\mathrm{\varphi\rho} \vec{e}_\mathrm{\rho} + \sigma_{\text{z}\mathrm{\rho}} \vec{e}_\text{z}) \mathrm{d} A\]
\[\vec{F} = \int\limits_\text{O} (\sigma_\mathrm{\rho\rho} \vec{e}_\mathrm{\rho} + \sigma_\mathrm{\varphi\rho} \vec{e}_\mathrm{\varphi} + \sigma_{\text{z}\mathrm{\rho}} \vec{e}_\text{z}) \mathrm{d} A\]


mit
mit


\[\sigma=-p\mathbb{1} + \mu \left( \vec{\nabla} \vec{u} + \left(\vec{\nabla} \vec{u}\right)^\mathrm{T} - \frac{2}{3} \vec{\nabla} \cdot \vec{u} \mathbb{1} \right)\]
\[\sigma=-p\mathbb{1} + \mu \left( \vec{\nabla} \vec{u} + \left(\vec{\nabla} \vec{u}\right)^\mathrm{T} - \frac{2}{3} \vec{\nabla} \cdot \vec{u} \mathbb{1} \right)\]

Revision as of 15:27, 30 June 2025

Herleitung der Kraft in einen Zylinder

\[\vec{F} = \int\limits_\text{O} \sigma \mathrm{d} \vec{A} \]

Da \(\vec{A} = A \vec{e}_\mathrm{\rho}\), gilt

\[\vec{F} = \int\limits_\text{O} (\sigma_\mathrm{\rho\rho} \vec{e}_\mathrm{\rho} + \sigma_\mathrm{\varphi\rho} \vec{e}_\mathrm{\varphi} + \sigma_{\text{z}\mathrm{\rho}} \vec{e}_\text{z}) \mathrm{d} A\]

mit

\[\sigma=-p\mathbb{1} + \mu \left( \vec{\nabla} \vec{u} + \left(\vec{\nabla} \vec{u}\right)^\mathrm{T} - \frac{2}{3} \vec{\nabla} \cdot \vec{u} \mathbb{1} \right)\]