User:Lothar.brendel: Difference between revisions
Jump to navigation
Jump to search
2D flow in polar coordinates
(→Scratch Pad: Florians eCDF) |
m (→Florian's eCDF: same ~p_n) |
||
Line 28: | Line 28: | ||
$$ | $$ | ||
c(n_i)-c(n_{i-1})\stackrel{*}{=}c(n_i)-c(n_i-1)=c(n_i)-c(n_i-\epsilon)=p_{n_i}~. | c(n_i)-c(n_{i-1})\stackrel{*}{=}c(n_i)-c(n_i-1)=c(n_i)-c(n_i-\epsilon)=p_{n_i}~. | ||
$$ Florian's modified eCDF replaces the step-function | $$ Florian's modified eCDF replaces the step-function | ||
$$ | $$ | ||
s_{n_i}=\frac{\tilde c(n_i)-\tilde c(n_{i-1})}{n_i-n_{i-1}} = \frac{c(n_i)-c(n_{i-1})}{n_i-n_{i-1}}~, | s_{n_i}=\frac{\tilde c(n_i)-\tilde c(n_{i-1})}{n_i-n_{i-1}} = \frac{c(n_i)-c(n_{i-1})}{n_i-n_{i-1}}~, | ||
Line 36: | Line 36: | ||
\sum_{n=n_{i-1}+1}^{n_i} \tilde p_n = (n_{i}-n_{i-1})\tilde p_n = (n_{i}-n_{i-1})s_{n_i} = c(n_i)-c(n_{i-1}) = p_{n_i}~. | \sum_{n=n_{i-1}+1}^{n_i} \tilde p_n = (n_{i}-n_{i-1})\tilde p_n = (n_{i}-n_{i-1})s_{n_i} = c(n_i)-c(n_{i-1}) = p_{n_i}~. | ||
$$ | $$ | ||
Hence, the effect of using | Hence, the effect of using | ||
Revision as of 11:57, 10 July 2024
Lothar Brendel
"Admin" of this Wiki
Scratch Pad
2D flow in polar coordinates
- vorticity:
- its gradient:
Energy equation
Florian's eCDF
Let
*: even though in general