User:Lothar.brendel: Difference between revisions
Jump to navigation
Jump to search
2D flow in polar coordinates
(→Scratch Pad: +Hamiltons) |
(→Scratch Pad: Florians eCDF) |
||
Line 22: | Line 22: | ||
\partial_t E' &= -\vec\nabla\cdot\big((E'+P)\vec u\big)+\vec u\cdot\vec f | \partial_t E' &= -\vec\nabla\cdot\big((E'+P)\vec u\big)+\vec u\cdot\vec f | ||
\end{align} | \end{align} | ||
== Florian's eCDF == | |||
Let | |||
$$ | |||
c(n_i)-c(n_{i-1})\stackrel{*}{=}c(n_i)-c(n_i-1)=c(n_i)-c(n_i-\epsilon)=p_{n_i}~. | |||
$$ Florian's modified eCDF replaces the step-function | |||
$$ | |||
s_{n_i}=\frac{\tilde c(n_i)-\tilde c(n_{i-1})}{n_i-n_{i-1}} = \frac{c(n_i)-c(n_{i-1})}{n_i-n_{i-1}}~, | |||
$$ | |||
which implies | |||
$$ | |||
\sum_{n=n_{i-1}+1}^{n_i} \tilde p_n = (n_{i}-n_{i-1})\tilde p_n = (n_{i}-n_{i-1})s_{n_i} = c(n_i)-c(n_{i-1}) = p_{n_i}~. | |||
$$ | |||
Hence, the effect of using | |||
<nowiki>*</nowiki>: even though in general | |||
== Hamiltons principle == | == Hamiltons principle == |
Revision as of 11:43, 10 July 2024
Lothar Brendel
"Admin" of this Wiki
Scratch Pad
2D flow in polar coordinates
- vorticity:
- its gradient:
Energy equation
Florian's eCDF
Let
*: even though in general