User:Lothar.brendel: Difference between revisions
Jump to navigation
Jump to search
(→Scratch Pad: Energie-Gleichung) |
(→Scratch Pad: +Hamiltons) |
||
| Line 22: | Line 22: | ||
\partial_t E' &= -\vec\nabla\cdot\big((E'+P)\vec u\big)+\vec u\cdot\vec f | \partial_t E' &= -\vec\nabla\cdot\big((E'+P)\vec u\big)+\vec u\cdot\vec f | ||
\end{align} | \end{align} | ||
== Hamiltons principle == | |||
* Phys.SE: [https://physics.stackexchange.com/questions/560216/modified-hamiltons-principle-overconstraining-a-system-by-imposing-too-many-bou Modified Hamilton's Principle overconstraining a system by imposing too many boundary conditions] | |||
* Phys.SE: [https://physics.stackexchange.com/questions/431685/boundary-conditions-for-calculus-of-variations-in-phase-space-and-under-canonica Boundary conditions for calculus of variations in phase space and under canonical transformations] | |||
Revision as of 06:42, 10 July 2024
Lothar Brendel
"Admin" of this Wiki
Scratch Pad
2D flow in polar coordinates \((\rho,\phi)\)
- vorticity: \(\omega=(\vec\nabla\times\vec v)\cdot\vec e_z=\partial_\rho v_\phi+\displaystyle\frac{v_\phi-\partial_\phi v_\rho}{\rho }\)
- its gradient: \(\vec\nabla\omega=\vec e_\rho\partial_\rho\omega+\displaystyle\frac{\vec e_\phi}{\rho}\partial_\phi\omega\)
Energy equation
\begin{align} E' &= \rho e+\frac{\rho}{2}\vec u^2\\ E &= E' + \rho\phi\\ \partial_t E &= \partial_t E' + \phi\partial_t\rho\\ &= -\vec\nabla\cdot\big((E+P)\vec u\big)\\ &= -\vec\nabla\cdot\big((E'+P)\vec u+\phi\rho\vec u\big)\\ &= -\vec\nabla\cdot\big((E'+P)\vec u\big)-\phi\vec\nabla\cdot(\rho\vec u)-\vec u\cdot\rho\vec\nabla\phi\\ \Leftrightarrow\quad \partial_t E' &= -\vec\nabla\cdot\big((E'+P)\vec u\big)+\vec u\cdot\vec f \end{align}