BA Beat Teuber: Difference between revisions
Jump to navigation
Jump to search
(Created page with "== Herleitung der Kraft in einen Zylinder == \[\vec{F} = \int\limits_\text{O} \sigma \mathrm{d} \vec{A} \] Da \(\vec{A} = A \vec{e}_\mathrm{\rho}\), gilt \[\vec{F} = \int\limits_\text{O} (\sigma_\mathrm{\rho\rho} \vec{e}_\text{r} + \sigma_\mathrm{\varphi\rho} \vec{e}_\mathrm{\rho} + \sigma_{\text{z}\mathrm{\rho}} \vec{e}_\text{z}) \mathrm{d} A\] mit \[\sigma=-p\mathbb{1} + \mu \left( \vec{\nabla} \vec{u} + \left(\vec{\nabla} \vec{u}\right)^\mathrm{T} - \frac{2}{3} \...") |
|||
| (One intermediate revision by the same user not shown) | |||
| Line 1: | Line 1: | ||
== Herleitung der Kraft | == Herleitung der Kraft auf einen Zylinder == | ||
\[\vec{F} = \int\limits_\text{O} \sigma \mathrm{d} \vec{A} \] | \[\vec{F} = \int\limits_\text{O} \sigma \mathrm{d} \vec{A} \] | ||
| Line 5: | Line 5: | ||
Da \(\vec{A} = A \vec{e}_\mathrm{\rho}\), gilt | Da \(\vec{A} = A \vec{e}_\mathrm{\rho}\), gilt | ||
\[\vec{F} = \int\limits_\text{O} (\sigma_\mathrm{\rho\rho} \vec{e}_\ | \[\vec{F} = \int\limits_\text{O} (\sigma_\mathrm{\rho\rho} \vec{e}_\mathrm{\rho} + \sigma_\mathrm{\varphi\rho} \vec{e}_\mathrm{\varphi} + \sigma_{\text{z}\mathrm{\rho}} \vec{e}_\text{z}) \mathrm{d} A\] | ||
mit | mit | ||
\[\sigma=-p\mathbb{1} + \mu \left( \vec{\nabla} \vec{u} + \left(\vec{\nabla} \vec{u}\right)^\mathrm{T} - \frac{2}{3} \vec{\nabla} \cdot \vec{u} \mathbb{1} \right)\] | \[\sigma=-p\mathbb{1} + \mu \left( \vec{\nabla} \vec{u} + \left(\vec{\nabla} \vec{u}\right)^\mathrm{T} - \frac{2}{3} \vec{\nabla} \cdot \vec{u} \mathbb{1} \right)\] | ||
Latest revision as of 15:28, 30 June 2025
Herleitung der Kraft auf einen Zylinder
\[\vec{F} = \int\limits_\text{O} \sigma \mathrm{d} \vec{A} \]
Da \(\vec{A} = A \vec{e}_\mathrm{\rho}\), gilt
\[\vec{F} = \int\limits_\text{O} (\sigma_\mathrm{\rho\rho} \vec{e}_\mathrm{\rho} + \sigma_\mathrm{\varphi\rho} \vec{e}_\mathrm{\varphi} + \sigma_{\text{z}\mathrm{\rho}} \vec{e}_\text{z}) \mathrm{d} A\]
mit
\[\sigma=-p\mathbb{1} + \mu \left( \vec{\nabla} \vec{u} + \left(\vec{\nabla} \vec{u}\right)^\mathrm{T} - \frac{2}{3} \vec{\nabla} \cdot \vec{u} \mathbb{1} \right)\]