User:Lothar.brendel: Difference between revisions
Jump to navigation
Jump to search
(→Scratch Pad: -Img-Test) Tag: Manual revert |
(→Scratch Pad: Energie-Gleichung) |
||
| Line 9: | Line 9: | ||
* vorticity: \(\omega=(\vec\nabla\times\vec v)\cdot\vec e_z=\partial_\rho v_\phi+\displaystyle\frac{v_\phi-\partial_\phi v_\rho}{\rho }\) | * vorticity: \(\omega=(\vec\nabla\times\vec v)\cdot\vec e_z=\partial_\rho v_\phi+\displaystyle\frac{v_\phi-\partial_\phi v_\rho}{\rho }\) | ||
* its gradient: \(\vec\nabla\omega=\vec e_\rho\partial_\rho\omega+\displaystyle\frac{\vec e_\phi}{\rho}\partial_\phi\omega\) | * its gradient: \(\vec\nabla\omega=\vec e_\rho\partial_\rho\omega+\displaystyle\frac{\vec e_\phi}{\rho}\partial_\phi\omega\) | ||
== Energy equation == | |||
\begin{align} | |||
E' &= \rho e+\frac{\rho}{2}\vec u^2\\ | |||
E &= E' + \rho\phi\\ | |||
\partial_t E &= \partial_t E' + \phi\partial_t\rho\\ | |||
&= -\vec\nabla\cdot\big((E+P)\vec u\big)\\ | |||
&= -\vec\nabla\cdot\big((E'+P)\vec u+\phi\rho\vec u\big)\\ | |||
&= -\vec\nabla\cdot\big((E'+P)\vec u\big)-\phi\vec\nabla\cdot(\rho\vec u)-\vec u\cdot\rho\vec\nabla\phi\\ | |||
\Leftrightarrow\quad | |||
\partial_t E' &= -\vec\nabla\cdot\big((E'+P)\vec u\big)+\vec u\cdot\vec f | |||
\end{align} | |||
Revision as of 19:35, 26 June 2024
Lothar Brendel
"Admin" of this Wiki
Scratch Pad
2D flow in polar coordinates \((\rho,\phi)\)
- vorticity: \(\omega=(\vec\nabla\times\vec v)\cdot\vec e_z=\partial_\rho v_\phi+\displaystyle\frac{v_\phi-\partial_\phi v_\rho}{\rho }\)
- its gradient: \(\vec\nabla\omega=\vec e_\rho\partial_\rho\omega+\displaystyle\frac{\vec e_\phi}{\rho}\partial_\phi\omega\)
Energy equation
\begin{align} E' &= \rho e+\frac{\rho}{2}\vec u^2\\ E &= E' + \rho\phi\\ \partial_t E &= \partial_t E' + \phi\partial_t\rho\\ &= -\vec\nabla\cdot\big((E+P)\vec u\big)\\ &= -\vec\nabla\cdot\big((E'+P)\vec u+\phi\rho\vec u\big)\\ &= -\vec\nabla\cdot\big((E'+P)\vec u\big)-\phi\vec\nabla\cdot(\rho\vec u)-\vec u\cdot\rho\vec\nabla\phi\\ \Leftrightarrow\quad \partial_t E' &= -\vec\nabla\cdot\big((E'+P)\vec u\big)+\vec u\cdot\vec f \end{align}