
Designing The Organizational Reuse Environment

Enabling Citizen Developers to
Reuse Process Automation Artifacts

Peter A. François1[0000-0003-1537-1026] and Ralf Plattfaut2[0000-0002-1442-4758]

1 South Westphalia University of Applied Sciences, Lübecker Ring 2, 59494 Soest, fran-
cois.peter@fh-swf.de

2 University of Duisburg-Essen, Chair of Information Systems and Transformation Manage-
ment, Universitätsstraße 2, 45141 Essen, ralf.plattfaut@icb.uni-due.de

Abstract. With the increasing proliferation of Robotic Process Automation and
other low-code approaches in automating business processes come new chal-
lenges for reusing automation artifacts. Business logic is implemented in multiple
technologies and developed decentrally across the organization. Especially citi-
zen developers, who do not have extensive programming knowledge, face issues
regarding reuse. Based on a thorough literature analysis and informed by Trans-
action Cost Theory, this research in progress identifies five challenges for reuse.
Following design science research, we develop five principles that help organi-
zations set up reuse environments that encompass both low-code and traditional
development regarding automation artifacts. In addition, we describe how we
plan to validate the principles in the next stage of our research.

Keywords: Reuse, Low-Code, Process Automation, Citizen Developer, Tech-
nological Rule, Design Science

1 Introduction

Organizations use various technologies to automate their business processes [1], in-
cluding Robotic Process Automation (RPA) and other low- or no-code approaches.
Some of these automation efforts are carried out by Citizen Developers. Citizen devel-
opers are regular employees aiding in process automation. They can apply their in-
depth process knowledge during optimization and automation, however, they have little
or no formal knowledge regarding professional techniques – such as reuse [2, 3]. This
“lack” of knowledge impairs awareness regarding the benefits and pitfalls of reuse.

The benefits of reuse range from lower implementation cost over faster implemen-
tation time to consistent (high) artifact quality and overall reduced maintenance needs
[4–6]. Simultaneously, reuse brings a set of issues or even dangers. A recent example
is the reuse of Log4j, a logging utility used for logging in Java programs. The vulnera-
bility allowed malicious entities to inject and execute code in multiple thousand soft-
ware systems that (re)used the framework (see, e.g., [7]). With the advent of citizen
developers, reuse – and therefore both its benefits and issues – are made available to

2 Peter A. François and Ralf Plattfaut

various business users [8]. They then face similar issues as traditional, trained develop-
ers in achieving the benefits and mitigating potential issues and dangers of reuse.

Since reuse holds such benefits and can be so hard to conduct correctly, organiza-
tions would benefit from design principles for creating reuse environments that, on the
one hand, unlock the potential of reuse for all employees conducting Business Process
Optimization (regular and citizen developers) and, on the other hand, shield the organ-
ization (and individuals) from potential damage from improper reuse or improper arti-
facts. These principles must be easily understandable, not only by regular IT developers
but also by citizen developers. At the same time, the design principles must be applica-
ble to all process automation artifacts at all stages of development, both in low-code
and traditional development to harness the full potential of all reusable artifacts.

The participation of citizen developers and the use of varying technologies (tradi-
tional programming and RPA or low- and no-code technologies) bring significant chal-
lenges to business process automation. The decentral nature of citizen development and
the citizen developers’ lack of development knowledge can hinder reuse. Simultane-
ously, important and valuable business logic now exists within traditional and also low-
code artifacts. This leads to the following research questions:

─ What are the challenges associated with the reuse of process automation artifacts,
especially considering a citizen developer involvement?

─ How should organizations design organizational environments from a managerial
standpoint to facilitate the reuse of distributed process automation artifacts in differ-
ent technologies?

This paper is structured in 7 sections. We first describe the design science method used
to answer these questions. We chose to place the background section thereafter since
the concepts described there directly inform our design principles. Next, we set out to
develop design principles for the organizational reuse environment. To this end, we rely
on the Transaction Cost Theory (TCT). As a first rigor-cycle, we employ challenges
regarding reuse based on a structured literature review. Finally, we derive design prin-
ciples for the organizational reuse environment. We end with a concluding discussion
outlining our future research approach to evaluate the design principles.

2 Method

Fig. 1. Research Process

 Designing The Organizational Reuse Environment 3

This paper follows a design science research approach [9, 10]. Figure 1 gives an over-
view of the research process. We first (1) conducted a thorough systematic literature
review to identify existing research on automation reuse using “automation reuse” with-
out quotation marks as the search term in the AIS eLibrary, Senior Scholar’s Basket of
Eight, and the proceedings of the BPM conference. The literature review consists of
2075 original hits. We chose these outlets to both get a broad overview of the field of
reuse in process automation [11] and also a good idea of how the phenomena of low-
code development and citizen developership impact it. We then filtered the articles,
first by title, then by abstract. The filtered search resulted in 136 articles. After con-
ducting a selective backward search, we included 170 articles in total. We then applied
grounded theory [12] to the 170 selected papers, resulting in 826 coded segments.
Based on these results, we applied axial coding, resulting in 89 aggregated codes. The
literature review process is described in further detail in [13].

As a second step, we systematized the challenges regarding reuse based on the liter-
ature. The results of this step are described in section 5.

Based on the findings of the entire literature review, as a third step, we applied a
view of TCT and developed a set of organizational design principles following van
Aken [14]. According to van Aken [14], such principles are to be viewed as an “exem-
plar” that aids in achieving a specific state in a specific situation, meaning that adjust-
ment is required when aims or situations diverge. For this paper, we assume that every
design principle aims to maximize the potential of reuse by decreasing transaction cost
while mitigating potential pitfalls. Following the work of Gregor et al. [10], who take
the work of van Aken [14] into consideration, we detail the design principles with the
relevant justificatory knowledge (e.g., TCT as our kernel theory).

The effectiveness of the proposed principles will be evaluated in a later stage in our
research. To this extent, we plan to validate our findings in multiple organizations (so
far being in contact with 7) and refine them utilizing the practitioner’s feedback.

3 Background

3.1 3.1 Low-Code development and citizen developers

Low-code platforms allow developers to create software with pre-defined components
that include specific functionality while using little to or even no code in the traditional
sense [3]. The use of the pre-defined automation components allows the (re)use of basic
functionality provided by the platform vendor, which can then be configured to fit the
process and specific requirements [15]. The use of components and the quick reconfig-
urability can lead to high development efficiency [15]. However, low-code systems can
reach a complexity similar to regular systems [16]. The quick artifact development and
current knowledge of process execution improvement potentials allow quick process
innovation, which is one driver for businesses to utilize such systems [17].

RPA is one technology in this category that allows the automation of digital tasks
that were previously manually conducted on the graphical user interface [32].

Low-code development is usually performed in a visual editor and is said to require
little to no formal training, which also allows “regular” (non-IT) employees to create

4 Peter A. François and Ralf Plattfaut

automation solutions utilizing them [15]. These so-called Citizen Developers have little
to no formal programming training [3], but being close to the process execution allows
them to bring a deep understanding of business processes, allowing for process and IT
alignment [3, 18].

3.2 Reuse for citizen-developers

The idea of partial or full reuse of artifacts such as libraries or standard software has
been a part of information systems (IS) development for a long time (see, e.g., [19, 20]).
Reuse is the act of utilizing an existing artifact in new ways or utilizing (parts of) ex-
isting artifacts in new development [19]. Reuse may range from copying and pasting
parts of artifacts (see, e.g., [19]) over modular or model-driven systems (see, e.g., [21,
22]) up to the reuse of partial or entire architectures [23]. Reuse is applied not only to
purely technical artifacts but may also encompass specifications such as business pro-
cess models (see, e.g., [24]) or knowledge (see, e.g., [25]). Due to its benefits, it is
routinely applied in software engineering practice (see, e.g., [26, 27]) with some mod-
ern developing methodologies even having reuse as one of the core concepts of devel-
opment (e.g., service-oriented architectures [19, 26]).

Allowing non-IT personnel to develop low-code or no-code applications has enabled
companies to develop IT artifacts more quickly and to bring IS development closer to
the business knowledge manifested in organizational routines [2, 8]. Traditional pro-
gramming knowledge – however, is not necessary to become a citizen developer [2].
The citizen developers creating these low-code applications now face similar questions
regarding reuse that professional IT workers face without having undergone the same
comprehensive training. Therefore, methods and technologies to help citizen develop-
ers with reuse without having to undergo vast training are needed.

The literature on the reuse of low-code and citizen developer software is sparse. Ta-
ble 1 offers a selection of the seminal literature.

Table 1. Excerpts from the seminal literature on low-code and citizen developer reuse

Source Stance on reuse

[28]
The authors propose reuse as one measure to allow quick scaling and cost-saving in
low-code projects. They describe that the existence of a large number of compo-
nents reduces assembly and delivery cost in new development. However, they do
not describe how to set up a reuse environment.

[16]
Reuse of low-code applications is severely limited by a lack of professional devel-
opment features that aid it, such as modules (depending on the technology). This
can lead to opportunistic reuse and, thus, inefficient reuse and propagating errors.

[29]
After scaling RPA operations, the case company used reusable components to ena-
ble the automation of more processes. This is supported by a central component
repository allowing citizens to search for components and track their automation
ideas/wishes. The authors describe that the repository eases maintenance.

Since artifacts developed by citizen developers are naturally created decentrally (by
employees across the organization), finding suitable artifacts for reuse across a vast
number of private artifact repositories may increase the effort for each instance of reuse.

 Designing The Organizational Reuse Environment 5

At an extreme, this may lead to constant redevelopment due to this high effort or even
biases like the “not-invented-here syndrome” (e.g., [19, 30]). A high resulting number
of artifacts further complicates finding “the right” artifact [31]. Thus, artifact develop-
ment in a citizen developer setting can lead to further inefficiencies in software reuse.

The described additional inefficiencies in the reuse process can make reuse unviable,
especially when compared to the reduced initial or re-developing cost citizen developer
systems bring (compare, e.g., [32] and [19]). In contrast, however, Lacity et al. [28]
identify reusing low-code solutions as a major driver for scaling low-code solutions.
Noppen et al. [33] additionally describe the need for reuse in low-code applications due
to high maintenance efforts caused by a large number of similar components.

3.3 Transaction cost theory

Coarse [34, 35] argued that there are costs associated with performing transactions in a
market. According to Coarse [34], a resource is traded until either A) the value of a
good is maximized within the market or B) the transaction cost of performing further
trades outweighs the trade’s added value. The formation of organizational structures
can be used to minimize transaction cost within the organization. A large availability
of goods on the market, therefore, allows to satisfy more customers and leads to lower
purchasing cost. However, Coarse [34] also describes a negotiation cost associated with
organizations agreeing on the terms of trading a specific good.

Regarding software artifacts, the value of an artifact is not necessarily decreased
when multiple (non-malicious) actors have access to the artifact. Especially in the same
organization, the value of an artifact can be harnessed several times, gaining additional
value from each (re)use [19]. In theory, an artifact can bring infinite value if there is a
reuse opportunity that brings higher benefits than transaction costs. In practice, there is
a higher cost associated with creating a reusable artifact than a traditional artifact in the
first place or adapting a reusable artifact to be reusable in a new context [19].

4 Taking a transaction cost perspective on reuse

Fig. 2. Reuse artifact markets inside an organizational reuse environment

6 Peter A. François and Ralf Plattfaut

We argue that organizational reuse environments can include several ‘markets’ for re-
usable components and thus have several boundaries that can add transaction cost. Es-
pecially in citizen development (usually conducted decentrally), “silos” can form.
Figure 2 shows exemplary artifact markets existing in an exemplary organizational re-
use environment and the relative associated transaction cost. Each time reuse (i.e. a
transaction) is considered, the reusing actor (RA) has the option of accessing markets
‘offerings’, choosing and reusing one of the artifacts. These artifacts may be developed
by citizen developers or “professionals” in low-code or traditional programming.
First, the RA may have access to a private repository that holds their working files. The
RA should be roughly aware of the artifacts within, leading to a low transaction cost
regarding reuse. In the case of a shared workgroup repository the RA has access to
(“Repo X” in Figure 2), an additional element of evaluation cost applies since the re-
pository holds artifacts created by other actors which must be examined and understood
before they can be reused adding to the transaction cost.

Further personal or shared repositories (e.g., group folders of other groups) may exist
within the company. The RA may not have access to these (‘infinite’ transaction cost).
Only if the RA has some prior knowledge about which sort of artifacts may be within
the repositories can the RA request access to artifacts from these repositories. Alterna-
tively, an actor with access to these repositories could voluntarily offer the RA artifacts
stored within them. For this to happen, the participants must create some form of con-
nection. The transaction cost would still be fairly high for both artifacts, requiring direct
coordination, possibly manual component transfer, and trust between both parties. Es-
pecially when the RA is a citizen developer, additional hurdles lay in understanding
and evaluating the artifacts and making them compatible with, for example, RPA.

Additionally, there may be an organizational environment designed to aid reuse, in-
cluding a repository of components for reuse across the organization, where the organ-
izational measures and social constructs within the organization influence reuse.

Another possible source for reusable artifacts outside the organization is proprietary
artifact markets or free public repositories. Proprietary Artifact markets allow actors to
buy artifacts from vendors [18]. In the case of a trusted vendor, this transaction can be
seen similarly to a transaction within the organization, plus the buying price for the
artifact. Free public repositories allow access to artifacts without purchase [35]. In the
case of an unknown artifact provider, an additional evaluation cost may occur. Both
artifact markets and free public repositories may, however, include a large number of
competing vendors offering similar components. This high number of components can
then further increase the cost of discovery and evaluation.

5 The challenges of reuse

From the literature, we identify five major challenges that must be overcome to conduct
reuse successfully. We will describe them in the following.

C1 Designing Reusable Artifacts: Challenges in developing reusable artifacts arise
in the development of the basic functionality of the artifact, its granularity, making it
reusable in several contexts, and finding all relevant contexts. First, in creating reusable

 Designing The Organizational Reuse Environment 7

artifacts, there is the initial effort and cost of developing the reuse artifact. To calculate
the cost of a specific reuse instance, this initial development cost can be divided by the
number of instances the artifact is reused [19,38]. Moreover, artifacts must have the
“correct granularity” (size) to be reusable [19, 37]. Smaller artifacts are easy to reuse
since they have simple and easy-to-understand functionality (e.g., an RPA bot to log
into a system). Larger artifacts are more challenging to reuse since they include context
or process-specific requirements, yet are more valuable when reused (e.g., an RPA bot
that executes several process steps) [19].

There can also be an additional development cost to make an artifact reusable (e.g.,
additional requirements like interfaces or effort for generalizing; see [38, 39]). The field
of Software Engineering has developed various procedures to reduce reusability cost
by designing artifacts for reuse, such as standardized interfaces like REST or design
principles for reusable artifacts (see, e.g., [22, 40, 41]). Citizen developers, however,
may not be aware of these concepts, especially as RPA enables automation via the user
interface. These concepts may also not be easily applicable to low-code technologies.

Artifact creators must consider all possible contexts in which an artifact may be used
during its lifetime to be able to cover requirements introduced by the use in that context
[42]. Imagining all potential contexts is almost impossible at the time of artifact crea-
tion. Creating artifacts that are reusable in different contexts can be costly in itself.
Adaptation (see C3 below) can be necessary when reuse in a specific context has not
been considered during initial development.

C2 Accessing and Evaluating Reusable Artifacts: When deciding whether to re-
use, one must weigh reuse against redevelopment [19, 38]. Thus, an actor has to find
the relevant reusable artifacts (e.g., in one of many repositories), gain access to them
(following formal or informal access processes), and evaluate the available artifacts
regarding their fit in the desired context (e.g., by examining documentation).

Consequently, similar to the concept of coordination cost in TCT, there is the cost
of finding and gaining access to reusable artifacts. Especially with small artifacts, the
cost of finding them may offset the benefit of reuse [31]. Artifacts must be searched for
amongst additional artifacts, making the discovery process tedious. This is especially
true if artifacts are not kept in a central repository but must be retrieved from various
undocumented repositories throughout the organization. Access may be complicated or
unachievable when artifacts are stored in multiple repositories and exist in several ver-
sions. The decentral nature of citizen development can further this issue.

In addition, there is the problem of evaluating the artifact. Each of the artifacts found
must be understood (to some extent) and evaluated regarding its value potential for this
specific reuse instance. The actor has to evaluate if the artifact fits the new context. The
artifact’s fit for the new context (and thus the amount of adaptation required) plays an
essential part in the cost of reuse and, thus, the decision between reuse and remake [38].

For citizen developers, a lack of formal training in software engineering and under-
standing of code may further complicate assessing components.

C3 Adapting and integrating Reusable Artifacts: When an artifact is found to be
applicable for use, adaptation and integration can be necessary to enable the artifact to
fit into the new environment and achieve its maximum potential. This adaptation can,
for example, include making artifacts compatible or adapting an artifact to fit a different

8 Peter A. François and Ralf Plattfaut

context [19, 41]. Increasing the effort spent in Evaluating Reusable Artifacts (C2) can
influence the effort in Adapting it (C3); it can aid in identifying more suitable artifacts
that require less adaptation and show which adaptation will be necessary. If high adap-
tation rates are necessary, redevelopment can be more cost or time-efficient [19, 43].
Regardless of whether the artifacts have been adapted, it must be integrated into the
new environment. The integration of artifacts can be laborious and error-inducing [4].
Therefore, the adaptation and integration must be tested, leading to further effort [19].

C4 Ensuring Security and Maintainability: The reuse of artifacts can necessitate
additional maintenance. If adaptations and maintenance operations are not propagated
upwards through the reuse pedigree, several versions of the same artifact will further
increase the need for (now separately conducted) maintenance and allow for additional
security and reliability issues (see, e.g., [7, 44]). Security and maintenance for reuse
must therefore be considered in two directions: It is hard to track where a specific arti-
fact has been reused (e.g., ‘Who uses our purchase bot? We want to change it.’) and
vice versa, which artifacts have been reused in a specific artifact (e.g., ‘Which artifacts
(low-code and traditional) does our purchase bot rely on?’). The additional effort in
security and maintenance leads to cost that may be small for generalized and often re-
used parts but larger when specialized artifacts with extensive adaptation are reused.

As citizen developers rarely have in-depth IT knowledge, performing such security
assessments and maintenance can be especially difficult for them. Reusing components
without sufficiently understanding them can introduce additional issues [5].

C5 Managing Reuse: Suitable governance mechanisms are critical for successful
reuse [45]. Too little guidance will hinder security and maintainability (see C4) and will
not allow the organization to harness the full potential of reuse [46]. It can also make
reuse inefficient: too little knowledge, too few reuse mechanisms, and too few best
practices will be available to the reuse actors. Too strict guidance will increase the
transaction cost as reuse processes become more complex (tracking reuse, asking for
permission, asking for requirements of other departments, coordinating update sched-
ules). Introducing citizen developers can further complicate governance efforts [47].

6 Designing the reuse environment to reduce transaction cost

The challenges mentioned contribute to the cost of each reuse transaction, making reuse
less viable. We argue that transaction cost is a roadblock for reuse for low-code auto-
mation. Even in traditional programming, transaction costs should be reduced as much
as possible to reap the full benefits of reuse. However, since artifacts created using low-
code technologies are cheaper and quicker to produce, there appears to be a reduced
benefit from reusing such an artifact compared to reusing more expensive traditional
artifacts. Reuse has been identified as critical to getting low-code projects up to scale
[28]. In the following, we develop five design principles (DPs) for organizational reuse
environments based on the abovementioned challenges, using transaction cost as the
kernel theory. We deem these DP viable both for low-code and traditional development.

DP1 Enable Actors to build Reusable Artifacts. For reuse to be possible, suitable
reusable artifacts must be available in the reuse market. As citizen developers are often

 Designing The Organizational Reuse Environment 9

not formally trained in developing artifacts with reuse in mind, this is a considerable
challenge due to the decentral nature of artifact development. Therefore, to enable reuse
actors to build a meaningful number of reusable artifacts…:

Give all artifact creators (including citizen developers) clear guidance on how to
perform reuse. Knowledge on reuse is a critical factor in being able to perform reuse
effectively and efficiently [19, 43]. Since artifacts must be reusable in other depart-
ments, developers must know the concept of reuse, how it is done in the organization
(standards and conventions), and how to create reusable artifacts [43, 45, 46].

Give artifact creators the knowledge required to decide which artifacts should be
designed with reuse in mind and made available. Since making artifacts reusable in
different contexts is associated with an additional cost [19, 42] and large repositories
can lead to high search, retrieval, and evaluation cost [19, 31], RAs must decide which
artifacts they should prepare for reuse and make available. To be able to make this
decision, artifact creators need to be enabled to estimate the reuse potential of compo-
nents. As citizen developers usually are close to the point of process knowledge creation
(see, e.g. [17, 48]), this value potential will include knowledge on how processes are
(or should be) conducted (see, e.g., [3]).

Offer reusable artifacts in different granularity (where possible). Finding the right
granularity is a balancing act between large components that bring the most benefits
and small components that can fit a variety of contexts without adaptation [37]. The
benefit of reusing artifacts that are too small may be countered by the transaction
cost [49]. Therefore, artifacts that are available in different granularities or are logically
dividable (e.g., assembled from several different artifacts) should be offered as such. If
low-code applications are used as a temporary fix (see e.g. [17]) this approach can also
help transition parts of the automation to “regular” backend systems [50].

DP2 Empower Artifact Access and Evaluation. To ensure that all (potential) reuse
actors are able to quickly evaluate potential reuse artifacts and deal with the number of
available artifacts…:

Ensure that every (potential) reuse actor can easily find potential reuse artifacts
across technologies and departments. According to Coarse [34], every market transac-
tion requires finding potential market partners, building contact with them, negotiating
the terms of the trade, conducting the trade, and evaluating the goods. Coarse
states: ”These operations are often extremely costly, sufficiently costly at any rate to
prevent many transactions that would be carried out in a world in which the pricing
system worked without cost” ([34]). In the context of reusing artifacts Rothenberger
and Kulkarni [51] phase this as: “The ideal retrieval method would neither require any
prior knowledge of the repository nor any informal communication among developers
to find the components needed.“ [51] We, therefore, argue that any potential developer
should have A) easy access to reusable components, with B) a standardized way of
accessing them, with C) a mostly automated “contract negotiation” (i.e., access rights),
preferably in D) one central artifact repository that allows searching and filtering as
artifact repositories have been identified as essential for reuse (see, e.g., [19, 51, 52]).

Give relevant metadata on the available artifacts. Evaluating artifacts for their reus-
ability and need for adaptation requires a major effort. This effort increases with the
number of artifacts available [31, 41]. Relevant metadata aids evaluation [53].

10 Peter A. François and Ralf Plattfaut

Name trusted and untrusted external sources of reuse components. As described
above, the reuse of artifacts created outside of the organization is another viable option.
In this case, trust and security become more important in artifact evaluation [41]. When
artifacts are trusted, and the characteristics of the artifacts are sufficiently evident, de-
velopers can utilize the artifacts in a black box approach (not examining the inside
working of the artifacts), leading to additional time savings [20]. Trusted artifacts
should be marked as such. The “Not invented here syndrome” may additionally hinder
reuse from outside repositories and vendors [19, 30]. We therefore suggest naming
trusted artifact suppliers.

DP3 Enforce Traceability and Lifecycle Control. To allow all reuse actors to trace
bugs and find security issues in their artifacts…:

Ensure that reuse artifacts can be traced throughout the entire reuse pedigree.
Changes to software artifacts can impact other artifacts [53]. Therefore, changes must
be tracked and (if necessary) applied to other contexts in which the artifact is used.
Otherwise, security flaws and bugs remain in these contexts. Otherwise, there will be
multiple versions of the same artifact, leading to increased maintenance and reuse (eval-
uation) cost. If security issues arise and are inherited to the new context a faulty system
is reused in, these issues must be trackable throughout the entire reuse pedigree.

Observe the lifecycle of reuse artifacts. Make its status and changes known to the
RAs. Each software should conform to a software lifecycle to achieve conformance,
quality, and security [54]. As low code governance can be centrally or decentrally or-
ganized [47], mechanisms should be in place that allow either central or decentral
lifecycle tracking in order to be able to find obsolete artifacts in the reuse pedigree and
update all (possibly adapted) artifact instances. Research must still be done on how the
lifecycle can be effectively tracked in such environments.

DP4 Manage Knowledge and Reuse Through Communities. To allow all reuse
actors to resolve issues, communicate about reuse, build, and share knowledge…:

Connect RAs through communities of practice and allow them to motivate each
other. The attitude of individual reuse actors and trust between RAs can impact the
success of reuse activities [55]. If there is no bond and collegiality between RAs, reluc-
tance to share code with or use code by others can arise [43, 56]. Communication and
connection is necessary for the success of reuse [25]. Therefore, organizations should
create reuse communities, forming bonds and trust between reusing developers.

Allow for the building of cross-sectional knowledge by implementing suitable
knowledge management. Knowledge (on reuse or in general) can also be reused. How-
ever: “Many organisational and professional cultures reward – sometimes uncon-
sciously – knowledge creation over knowledge reuse” [57]. Organizations should,
therefore, enhance the reuse of knowledge through appropriate measures of knowledge
management, like central knowledge repositories. The resulting community can also
help citizen developers who are new to reuse since new reuse actors face a steep learn-
ing curve [43]. Hallikainen et al. [29] found knowledge sharing as crucial to scale low-
code efforts.

Advance the reuse on knowledge by utilizing appropriate training and providing
teaching material. The amount of knowledge required necessitates adequate training in

 Designing The Organizational Reuse Environment 11

reuse [43]. Therefore, organizations should provide general training regarding reuse
and their specific reuse processes, considering the needs of different developer roles.

DP5 Build Strategy and Governance. To enable all reuse actors to align their reuse
procedures with the company’s goals and to further reuse…:

Clarify the organization’s strategy and goals regarding reuse. This includes whether
reuse should be seen as a goal in itself (e.g., to reduce the number of artifacts to main-
tain) or if reuse should only be conducted when financially advantageous. Middle man-
agers, in particular, can oppose efforts to set up reuse programs if a strategic view is
missing. Reuse efforts are often lengthy and do not show immediate benefits in their
personal performance indicators. On the contrary, efficiency may go down at first [5,
19]. A clearly defined strategy and goals will also aid developers in making reuse de-
cisions (e.g., reuse vs. remake, which artifact to choose).

Reward actors whose artifacts are reused. Kim and Stohr [19] describe that lower-
level management, when judged on their individual (and often short-term performance),
may not see the benefits of reuse. Similarly, in the spirit of TCT, Coarse [34] states that
when the value-adding processes of one actor (e.g., the reusing developer) diminishes
value or introduces cost (e.g., maintenance cost) at a second actor, the second actor
should be compensated by the first actor for the additional cost. Since a large portion
of the cost for reusable artifacts arises at the department of the creating actor (develop-
ment cost, continued maintenance, issue resolution), some form of compensatory mech-
anism is recommendable that lessens the burden of providing reusable artifacts.

Build suitable governance mechanisms to guide reuse processes yet do not over-
restrict reuse. Governance mechanisms must not be too restrictive since “For the soft-
ware reusability technique to be effective, it should be easier to reuse the devices than
to create them from scratch.” [58]. Yet, mechanisms must ensure security, compliance,
and compatibility between artifacts. While there are first insights on low-code govern-
ance (e.g. [47, 59]), future research should determine suitable mechanisms for reuse.

7 Concluding discussion

In this paper, we developed five design principles for the organizational reuse environ-
ment to enable citizen developers to reuse process automation artifacts. We based these
principles on common challenges in reuse and applied a transaction cost perspective.

Research has called for mechanisms that aid organization-wide reuse for both low-
code and BPM [6]. The revised BPM capability framework calls for “Multi-purpose
Process Design” [60]. Research on RPA has found “design[ing] bots for scalability and
later migration” as a critical success factor for RPA [61]. Similarly, Syed et al. describe
scaling RPA as a challenge and call for methods to aid it [62]. The proposed design
principles can help operationalize these calls. With our paper, we aid in furthering reuse
through a managerial approach. Researchers can build upon the principles and translate
the design-oriented insights into contributions to more general theories. Furthermore,
we extend the literature on process automation reuse [19]. Potentially, our insights
could inform existing theories in the domains of BPM, socio-technical change or new
development approaches for low-code development. For example, François et al. [63]

12 Peter A. François and Ralf Plattfaut

propose a method for anchoring reuse in the BPM lifecycle. Van Looy and Rotthier
[64] describe creating a set of reusable “building blocks” to aid process automation.
Průcha and Madzík [65] describe a technical approach to finding similar low-code com-
ponents. Such endeavors could benefit from our proposed approach. In addition, we
contribute to the Low-Code and Citizen Developer literature. For example, Bock et al.
call for “methods for guiding lay developers in the use of LCPs and classical software
development facilities” [15]. Our design principles can inform such methods and enable
organizations to implement managerial methods to allow process automation reuse.

Practitioners can use the challenges and design principles to implement or improve
process automation reuse initiatives, especially when relying on low-code or no-code
development. By doing so, they can circumvent the challenges of reuse systematized
above. By reducing the effort required for each act of reuse, we aid in maximizing the
overall value of reuse and making reuse accessible for citizen developers.

We plan a thorough in-vivo evaluation within a recently started four-year research
project with multiple private sector organizations. Here, we plan to implement the de-
sign principles in these organizations, conduct interviews with the responsible person-
nel, and implement an overarching reuse environment between the six participating or-
ganizations to aid cross-organizational reuse. We have conducted the first rigor cycle
[9] in this paper. The challenges of traditional software reuse have been stringently
researched from a theoretical and practical perspective [19]. Together with the chal-
lenges faced in scaling low-code development like RPA [62], this underlines the prac-
tical relevance of our proposed organizational design principles. Our planned evalua-
tion will also lead to iteratively refining them based on the empirical insights [66].

In addition, more research should be carried out on citizen developer reuse. So far,
it is unclear if the motivation to provide reuse components or to reuse components by
others is different for Citizen Developers who may not have extensive programming
knowledge and thus may be less able to assess artifacts regarding their reuse benefit.

We are aware that our research also comes with limitations. We acknowledge that
the “products” (components) in the market can, in theory, be used indefinitely without
losing value, which is not in the original spirit of TCT. However, the theory seems to
hold for other digital goods. In addition, while we conducted a broad literature review
and have implemented our design principles stringently based on this, there may be
additional relevant concepts in the literature or practice.

In summary, reuse has a rich history in Software Engineering. However, citizen de-
velopers face additional challenges in reuse, such as low formal training and decentral
development. Organizations should create an environment that allows for both the reuse
of traditional and low-code artifacts in order to maximize value. In this paper, we de-
veloped design principles for creating organizational reuse environments. To this aim,
we systematized common issues in reuse and applied a transaction cost perspective,
minding to the needs and limitations of citizen developers.

Acknowledgements
This work has been developed for the project KEBAP at South Westphalia University
of Applied Sciences. The project (reference number: 13FH034KX0) is partly funded
by the German Federal Ministry of Education and Research (BMBF).

 Designing The Organizational Reuse Environment 13

8 References

1. Dumas M, La Rosa M, Mendling J et al. (2018) Fundamentals of Business Process Manage
ment, 2nd ed. 2018. Springer, Berlin Heidelberg

2. Woo M (2020) The Rise of No/Low Code Software Development—No Experience Needed?
Engineering 6

3. Novales A, Mancha R (2023) Fueling Digital Transformation with Citizen Developers and
Low-Code Development. MISQ Executive 22

4. Apte U, Sankar CS, Thakur M et al. (1990) Reusability-Based Strategy for Development of
Information Systems: Implementation Experience of a Bank. MISQ 14

5. Allen G, Parsons J (2010) Is Query Reuse Potentially Harmful? Anchoring and Adjustment
in Adapting Existing Database Queries. Inf Syst Res 21:56–77

6. Beerepoot I, Di Ciccio C, Reijers HA et al. (2023) The biggest business process management
problems to solve before we die. Computers in Industry 146:103837

7. Xie W, Iyer L, Simpson SJ (2022) Agile Software Development Vulnerabilities and Chal-
lenges: An Empirical Study. AMCIS 2022 Proceedings 15

8. Li Y, Huang R (2022) Participating in Citizen Development: Theory of Planned Behavior.
AMCIS 2022 Proceedings 2

9. Hevner AR, March ST, Park,Jinsoo Ram,Sudha (2004) Design Science in Information Sys-
tems Research. MISQ 28

10. Gregor S, Chandra Kruse L, Seidel S (2020) Research Perspectives: The Anatomy of a De-
sign Principle. JAIS 21

11. Gogan JL, McLaughlin M-D, Thomas D (2014) Critical Incident Technique in the Basket.
ICIS 2014 Proceedings

12. Wolfswinkel JF, Furtmueller E, Wilderom CPM (2013) Using grounded theory as a method
for rigorously reviewing literature. EJIS 22:45–55

13. François PA, Plattfaut R (2023) The Reuse of Business Process Automation Artefacts. LNI
337

14. van Aken JE (2004) Management Research Based on the Paradigm of the Design Sciences:
The Quest for Field-Tested and Grounded Technological Rules. J. Manag. Stud. 41

15. Bock AC, Frank U (2021) Low-Code Platform. BISE 63:733–740
16. Lethbridge TC (2021) Low-Code Is Often High-Code, So We Must Design Low-Code Plat-

forms to Enable Proper Software Engineering. In: Margaria T, Steffen B (eds) Leveraging
Applications of Formal Methods, Verification and Validation, vol 13036. Springer, Cham

17. François PA, Borghoff V, Plattfaut R et al. (2022) Why Companies Use RPA: A Critical
Reflection of Goals. Business Process Management. BPM 2022, LNCS 13420

18. Naqvi SAA, Zimmer MP, Syed R et al. (2023) Understanding The Socio-Technical Aspects
Of Low-Code Adoption For Software Development. ECIS 2023 Research Papers 357

19. Kim Y, Stohr EA (1998) Software Reuse: Survey and Research Directions. J Manag Inf Syst
14

20. McIlroy MD (1968) Mass Produced Software Components. NATO Software Engineering
Conference

21. Delgado A, Ruiz F, García-Rodríguez de Guzmán I (2018) A reference model driven Archi-
tecture linking Business Processes and Services. HICSS 2018 Proceedings:4651–4660

22. Huang JC, Henfridsson O, Liu MJ (2022) Extending digital ventures through templating. Inf
Syst Res 33

23. Li S, Zhang H, Jia Z et al. (2021) Understanding and Addressing Quality Attributes of Mi-
croservices Architecture: A Systematic Literature Review. Inf Softw Technol 131

14 Peter A. François and Ralf Plattfaut

24. Becker J, Delfmann P, Knackstedt R (2007) Adaptive Reference Modeling: Integrating Con-
figurative and Generic Adaptation Techniques for Information Models. In: Reference Mod-
eling: Efficient Information Systems Design Through Reuse of Information Models. Physica

25. Asatiani A, Penttinen E, Rinta-Kahila T et al. (2019) Organizational Implementation of In-
telligent Automation as Distributed Cognition: Six Recommendations for Managers. ICIS
2019 Proceedings

26. Baskerville R, Cavallari M, Hjort-Madsen K et al. (2005) Extensible Architectures: The
Strategic Value of Service Oriented Architecture in Banking. ECIS 2005 Proceedings

27. Bjørnstad S (1994) A research programme for object-orientation. EJIS 3
28. Lacity M, Willcocks LP, Craig A (2015) Robotic Process Automation: Mature Capabilities

in the Energy Sector. The Outsourcing Unit Working Research Paper Series
29. Hallikainen P, Bekkhus R, Pan S (2018) How OpusCapita Used Internal RPA Capabilities

to Offer Services How OpusCapita Used Internal RPA Capabilities to Offer Services to Cli-
ents to Clients. MISQ Executive 17

30. Katz R, Allen TJ (1982) Investigating the Not-Invented-Here (NIH) syndrome: A look at
the performance, tenure, and communication patterns of 50 R&D project groups. R&D Man-
agement 12

31. Nazareth DL, Rothenberger M (2006) Does the ‘Golidlocks Conjecture’ Apply to Software
Reuse? JITTA 8

32. Lacity M, Willcocks LP (2018) Innovating in Service: The Role and Management of Auto-
mation. In: Willcocks LP, Oshri I, Kotlarsky J (eds) Dynamic innovation in outsourcing:
Theories, cases and practices. Palgrave Macmillan

33. Noppen P, Beerepoot I, van de Weerd I et al. (2020) How to Keep RPA Maintainable? Busi-
ness Process Management. BPM 2020, Lecture Notes in Computer Science 12168

34. Coarse R (1960) The Problem of Social Cost. JLE, 3
35. Coarse R (1937) The Nature of the Firm. Economica 4
36. Stallman RM (2002) Free software, free society: Selected essays of Richard M. Stallman.

GNU Press, Boston
37. Subramanyam R, Ramasubbu N, Krishnan MS (2012) In Search of Efficient Flexibility:

Effects of Software Component Granularity on Development Effort, Defects, and Customi-
zation Effort. ISR 23

38. Nazareth DL, Rothenberger MA (2004) Assessing the cost-effectiveness of software reuse:
A model for planned reuse. Journal of Systems and Software 73

39. Heinrich B, Huber A, and Zimmermann S (2011) Make-And-Sell Or Buy Of Web Services
A Real Option Approach. ECIS 2011 Proceedings

40. Anguswamy R, Frakes WB (2013) Reuse Design Principles. DReMeR ‘13 - International
Workshop on Designing Reusable Components and Measuring Reusability Picture held in
conjunction with the 13th International Conference on Software Reuse

41. Ren M, Lyytinen KJ (2008) Building Enterprise Architecture Agility and Sustenance with
SOA. CAIS 22

42. Bērziša S, Bravos G, Gonzalez TC et al. (2015) Capability Driven Development: An Ap-
proach to Designing Digital Enterprises. BISE 57

43. Sherif K, Menon NM (2004) Managing Technology and Administration Innovations: Four
Case Studies on Software Reuse. JAIS 5

44. Poulin JS, Caruso JM, Hancock DR (1993) The business case for software reuse. IBM Syst
J 32

45. Joachim N, Beimborn D, Weitzel T (2013) The influence of SOA governance mechanisms
on IT flexibility and service reuse. JSIS 22

 Designing The Organizational Reuse Environment 15

46. Becker A, Widjaja T, Buxmann P (2011) Value Potentials and Challenges of Service-Ori-
ented Architectures. BISE 3

47. Borghoff V, Plattfaut R (2022) Steering the Robots: An Investigation of IT Governance
Models for Lightweight IT and Robotic Process Automation. In: Business Process Manage-
ment: LNBIP, 459

48. Mirispelakotuwa I, Syed R, Wynn MT (2023) Is RPA Causing Process Knowledge Loss?
Insights from RPA Experts. In: Köpke J, López-Pintado O, Plattfaut R et al. (eds) Business
Process Management: Blockchain, Robotic Process Automation and Educators Forum, vol
491. Springer Nature

49. Rothenberger MA, Jain H, Sugumaran V (2017) A Platform-based Design Approach for
Flexible Software Components. JITTA 18

50. Strothmann A, Schulte M (2023) Migrating from RPA to Backend Automation: An Explor-
atory Study. In: Business Process Management: Blockchain, Robotic Process Automation
and Educators Forum. BPM 2023 Proceedings

51. Rothenberger MA, Kulkarni UR (2000) Software Reuse in Information Systems Develop-
ment. AMCIS 2000 Proceedings

52. Witman PD (2006) Tracing Patterns of Large-Scale Software Reuse. AMCIS 2006 Proceed-
ings

53. Juhrisch M, Thies G (2008) Service Management Beyond UDDI - A Design Science Ap-
proach. PACIS 2008 Proceedings

54. (2017) ISO/IEC/IEEE International Standard - Systems and software engineering - Software
life cycle processes (ISO/IEC/ IEEE 12207)

55. Ryan TJ, Walter C, Alarcon G et al. (2019) The Influence of Personality on Code Reuse.
HICSS 2019 Proceedings

56. Schreieck M, Wiesche M, Krcmar H (2022) Governing innovation platforms in multibusi-
ness organisations. EJIS

57. Davenport TH (2015) Process Management for Knowledge Work. In: vom Brocke J, Rose-
mann M (eds) Handbook on Business Process Management 1: Introduction, Methods, and
Information Systems, 2nd ed. Springer

58. Montecinos F (1996) An experience in the establishment of a software reuse culture in a real
environment. AMCIS 1996 Proceedings.

59. Kedziora D, Penttinen E (2021) Governance models for robotic process automation: The
case of Nordea Bank. JITTC 11

60. Kerpedzhiev GD, König MU, Röglinger M et al. (2021) An Exploration into Future Business
Process Management Capabilities in View of Digitalization. BISE 63

61. Plattfaut R, Borghoff V, Godefroid ME et al. (2022) The Critical Success Factors for Ro-
botic Process Automation. Computers in Industry 138:103646

62. Syed R, Suriadi S, Adams M et al. (2020) Robotic Process Automation: Contemporary
themes and challenges. Computers in Industry 115:103162

63. François PA, Kampmann M, Plattfaut R et al. (2023) Systematically embedding automation
reuse in business process management projects. LNI 340

64. van Looy A, Rotthier S (2018) Kiss the Documents! How the City of Ghent Digitizes Its
Service Processes. In: vom Brocke J, Mendling J (eds) Business Process Management Cases.
Springer International Publishing

65. Průcha P, Madzík P (2023) SiDiTeR: Similarity Discovering Techniques for Robotic Pro-
cess Automation. In: LNBIP, vol 491. Springer Nature Switzerland, Cham,

66. Hevner AR (2007) A three cycle view of design science research. SJIS 19

